GraCoRe: Benchmarking Graph Comprehension and Complex Reasoning in Large Language Models
- URL: http://arxiv.org/abs/2407.02936v1
- Date: Wed, 3 Jul 2024 09:12:38 GMT
- Title: GraCoRe: Benchmarking Graph Comprehension and Complex Reasoning in Large Language Models
- Authors: Zike Yuan, Ming Liu, Hui Wang, Bing Qin,
- Abstract summary: This paper presents GraCoRe, a benchmark for systematically assessing Large Language Models' graph comprehension and reasoning.
GraCoRe uses a three-tier hierarchical taxonomy to categorize and test models on pure graph and heterogeneous graphs.
Key findings reveal that semantic enrichment enhances reasoning performance, node ordering impacts task success, and the ability to process longer texts does not necessarily improve graph comprehension or reasoning.
- Score: 22.705728671135834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the graph comprehension and reasoning abilities of Large Language Models (LLMs) is challenging and often incomplete. Existing benchmarks focus primarily on pure graph understanding, lacking a comprehensive evaluation across all graph types and detailed capability definitions. This paper presents GraCoRe, a benchmark for systematically assessing LLMs' graph comprehension and reasoning. GraCoRe uses a three-tier hierarchical taxonomy to categorize and test models on pure graph and heterogeneous graphs, subdividing capabilities into 10 distinct areas tested through 19 tasks. Our benchmark includes 11 datasets with 5,140 graphs of varying complexity. We evaluated three closed-source and seven open-source LLMs, conducting thorough analyses from both ability and task perspectives. Key findings reveal that semantic enrichment enhances reasoning performance, node ordering impacts task success, and the ability to process longer texts does not necessarily improve graph comprehension or reasoning. GraCoRe is open-sourced at https://github.com/ZIKEYUAN/GraCoRe
Related papers
- A Hierarchical Language Model For Interpretable Graph Reasoning [47.460255447561906]
We introduce Hierarchical Language Model for Graph (HLM-G), which employs a two-block architecture to capture node-centric local information and interaction-centric global structure.
The proposed scheme allows LLMs to address various graph queries with high efficacy, efficiency, and robustness, while reducing computational costs on large-scale graph tasks.
Comprehensive evaluations across diverse graph reasoning and real-world tasks of node, link, and graph-levels highlight the superiority of our method.
arXiv Detail & Related papers (2024-10-29T00:28:02Z) - Can Large Language Models Analyze Graphs like Professionals? A Benchmark, Datasets and Models [90.98855064914379]
We introduce ProGraph, a benchmark for large language models (LLMs) to process graphs.
Our findings reveal that the performance of current LLMs is unsatisfactory, with the best model achieving only 36% accuracy.
We propose LLM4Graph datasets, which include crawled documents and auto-generated codes based on 6 widely used graph libraries.
arXiv Detail & Related papers (2024-09-29T11:38:45Z) - Revisiting the Graph Reasoning Ability of Large Language Models: Case Studies in Translation, Connectivity and Shortest Path [53.71787069694794]
We focus on the graph reasoning ability of Large Language Models (LLMs)
We revisit the ability of LLMs on three fundamental graph tasks: graph description translation, graph connectivity, and the shortest-path problem.
Our findings suggest that LLMs can fail to understand graph structures through text descriptions and exhibit varying performance for all these fundamental tasks.
arXiv Detail & Related papers (2024-08-18T16:26:39Z) - Node Level Graph Autoencoder: Unified Pretraining for Textual Graph Learning [45.70767623846523]
We propose a novel unified unsupervised learning autoencoder framework, named Node Level Graph AutoEncoder (NodeGAE)
We employ language models as the backbone of the autoencoder, with pretraining on text reconstruction.
Our method maintains simplicity in the training process and demonstrates generalizability across diverse textual graphs and downstream tasks.
arXiv Detail & Related papers (2024-08-09T14:57:53Z) - Graph Chain-of-Thought: Augmenting Large Language Models by Reasoning on Graphs [60.71360240206726]
Large language models (LLMs) suffer from hallucinations, especially on knowledge-intensive tasks.
Existing works propose to augment LLMs with individual text units retrieved from external knowledge corpora.
We propose a framework called Graph Chain-of-thought (Graph-CoT) to augment LLMs with graphs by encouraging LLMs to reason on the graph iteratively.
arXiv Detail & Related papers (2024-04-10T15:41:53Z) - G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
We develop a flexible question-answering framework targeting real-world textual graphs.
We introduce the first retrieval-augmented generation (RAG) approach for general textual graphs.
G-Retriever performs RAG over a graph by formulating this task as a Prize-Collecting Steiner Tree optimization problem.
arXiv Detail & Related papers (2024-02-12T13:13:04Z) - Talk like a Graph: Encoding Graphs for Large Language Models [15.652881653332194]
We study the first comprehensive study of encoding graph-structured data as text for consumption by large language models (LLMs)
We show that LLM performance on graph reasoning tasks varies on three fundamental levels: (1) the graph encoding method, (2) the nature of the graph task itself, and (3) interestingly, the very structure of the graph considered.
arXiv Detail & Related papers (2023-10-06T19:55:21Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
Large language models (LLMs) are increasingly adopted for a variety of tasks with implicit graphical structures.
We propose NLGraph, a benchmark of graph-based problem solving simulating in natural language.
arXiv Detail & Related papers (2023-05-17T08:29:21Z) - Grale: Designing Networks for Graph Learning [68.23038997141381]
We present Grale, a scalable method we have developed to address the problem of graph design for graphs with billions of nodes.
Grale operates by fusing together different measures of(potentially weak) similarity to create a graph which exhibits high task-specific homophily between its nodes.
We have deployed Grale in more than 20 different industrial settings at Google, including datasets which have tens of billions of nodes, and hundreds of trillions of potential edges to score.
arXiv Detail & Related papers (2020-07-23T13:25:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.