論文の概要: MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
- arxiv url: http://arxiv.org/abs/2407.10834v1
- Date: Mon, 15 Jul 2024 15:45:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-16 14:30:11.758987
- Title: MetaLLM: A High-performant and Cost-efficient Dynamic Framework for Wrapping LLMs
- Title(参考訳): MetaLLM: LLMの高性能で費用対効果の高い動的フレームワーク
- Authors: Quang H. Nguyen, Duy C. Hoang, Juliette Decugis, Saurav Manchanda, Nitesh V. Chawla, Khoa D. Doan,
- Abstract要約: 分類タスクに最適な大言語モデル(LLM)に各クエリを動的にルーティングするフレームワークであるMetaLLMを紹介する。
多武装バンディットとして選択問題をフレーミングすることで、MetaLLMは不確実性の下で予測精度とコスト効率のバランスをとる。
LLMプラットフォーム上で実施した本実験では,メタLLMの有効性を実世界のシナリオで示す。
- 参考スコア(独自算出の注目度): 21.689490112983677
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid progress in machine learning (ML) has brought forth many large language models (LLMs) that excel in various tasks and areas. These LLMs come with different abilities and costs in terms of computation or pricing. Since the demand for each query can vary, e.g., because of the queried domain or its complexity, defaulting to one LLM in an application is not usually the best choice, whether it is the biggest, priciest, or even the one with the best average test performance. Consequently, picking the right LLM that is both accurate and cost-effective for an application remains a challenge. In this paper, we introduce MetaLLM, a framework that dynamically and intelligently routes each query to the optimal LLM (among several available LLMs) for classification tasks, achieving significantly improved accuracy and cost-effectiveness. By framing the selection problem as a multi-armed bandit, MetaLLM balances prediction accuracy and cost efficiency under uncertainty. Our experiments, conducted on popular LLM platforms such as OpenAI's GPT models, Amazon's Titan, Anthropic's Claude, and Meta's LLaMa, showcase MetaLLM's efficacy in real-world scenarios, laying the groundwork for future extensions beyond classification tasks.
- Abstract(参考訳): 機械学習(ML)の急速な進歩は、様々なタスクや領域に優れた多くの大きな言語モデル(LLM)を生み出した。
これらのLCMには、計算能力や価格の面で異なる能力とコストが備わっている。
クエリの要求は、例えば、クエリされたドメインまたはその複雑さのため、アプリケーション内の1つのLCMへのデフォルトは、最も大きく、最も実用的で、最も平均的なテストパフォーマンスを持つものであっても、通常はベストチョイスではない。
したがって、アプリケーションに対して正確かつコスト効率のよい適切なLLMを選択することは、依然として課題です。
本稿では,各問合せを最適LLMに動的かつインテリジェントにルーティングし,精度とコスト効率を大幅に向上させるMetaLLMを提案する。
多武装バンディットとして選択問題をフレーミングすることで、MetaLLMは不確実性の下で予測精度とコスト効率のバランスをとる。
我々の実験は、OpenAIのGPTモデル、AmazonのTitan、AnthropicのClaude、MetaのLLaMaといった人気のあるLLMプラットフォーム上で実施され、現実世界のシナリオにおけるMetaLLMの有効性を示し、分類タスクを超えて将来の拡張の土台を築きました。
関連論文リスト
- WALL-E: World Alignment by Rule Learning Improves World Model-based LLM Agents [55.64361927346957]
大規模言語モデル(LLM)による規則の勾配なし学習のためのニューロシンボリックアプローチを提案する。
我々のLLMエージェントWALL-Eはモデル予測制御(MPC)上に構築されている
MinecraftとALFWorldにおけるオープンワールドの課題について、WALL-Eは既存の方法よりも高い成功率を達成する。
論文 参考訳(メタデータ) (2024-10-09T23:37:36Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なタスクで顕著な成功を収めたため、人気が高まっている。
しかしながら、個々のLLMは、トレーニングバイアス、モデルサイズ、使用されるデータセットなどの要因のために、複雑なタスクに適用する場合に制限がある。
本稿では,入力クエリを大規模プールからLLMの最も適切なサブセットに誘導する新しいアルゴリズムであるSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Meta Reasoning for Large Language Models [58.87183757029041]
大規模言語モデル(LLM)の新規かつ効率的なシステムプロセッシング手法であるメタ推論プロンプト(MRP)を導入する。
MRPは、各タスクの特定の要求に基づいて異なる推論メソッドを動的に選択し、適用するようLLMに誘導する。
総合的なベンチマークによりMPPの有効性を評価する。
論文 参考訳(メタデータ) (2024-06-17T16:14:11Z) - OptLLM: Optimal Assignment of Queries to Large Language Models [12.07164196530872]
大規模言語モデル(LLM)における費用効率の高いクエリ割り当て問題に対処するフレームワークを提案する。
当社のフレームワークであるOpsLLMは、ユーザに対して、予算の制約やパフォーマンスの優先事項に合わせて、選択可能なさまざまな最適なソリューションを提供します。
OptLLMの有効性を評価するため,テキスト分類,質問応答,感情分析,推論,ログ解析など,さまざまなタスクについて広範な実験を行った。
論文 参考訳(メタデータ) (2024-05-24T01:05:37Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Efficient Multimodal Large Language Models: A Survey [60.7614299984182]
MLLM(Multimodal Large Language Models)は、視覚的質問応答、視覚的理解、推論などのタスクにおいて顕著な性能を示す。
モデルサイズと高いトレーニングと推論コストが、MLLMのアカデミックや産業への応用を妨げている。
本調査は,効率的なMLLMの現状を包括的かつ体系的に概観するものである。
論文 参考訳(メタデータ) (2024-05-17T12:37:10Z) - SMART: Automatically Scaling Down Language Models with Accuracy Guarantees for Reduced Processing Fees [21.801053526411415]
大規模言語モデル(LLM)は自然言語処理(NLP)タスクの性能を大幅に向上させた。
高性能LLMの配備は、主にモデル性能の向上を目的としたパラメータの増大により、かなりのコストがかかる。
SMARTは,NLPタスクの推論コストを最小限に抑えつつ,十分な結果品質を確保するために設計された新しいフレームワークである。
論文 参考訳(メタデータ) (2024-03-11T17:45:47Z) - Cache me if you Can: an Online Cost-aware Teacher-Student framework to
Reduce the Calls to Large Language Models [13.799197575126442]
中小企業(中小企業)は、大規模なタスク固有のトレーニングデータセットを作成する費用を支払うことができない。
大規模言語モデルをプロンプトできるサードパーティサービスは、現在、通話1回あたりの支払いを必要としている。
本稿では,従来の応答をキャッシュし,ローカルな安価なモデルをトレーニングすることで,LCMへの呼び出しを削減できるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-20T10:05:07Z) - Generative Multimodal Entity Linking [24.322540112710918]
MEL(Multimodal Entity Linking)は、知識ベースからの参照エンティティへの参照をマルチモーダルコンテキストでマッピングするタスクである。
既存のMEL法は主に複雑なマルチモーダル相互作用機構の設計に重点を置いており、すべてのモデルパラメータを微調整する必要がある。
大規模言語モデル(LLM)に基づくジェネレーティブマルチモーダルエンティティリンクフレームワークであるGEMELを提案する。
当社のフレームワークは市販の言語モデルと互換性があり、効率的で汎用的なソリューションへの道を開いたものです。
論文 参考訳(メタデータ) (2023-06-22T07:57:19Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。