On the Efficacy of Surface Codes in Compensating for Radiation Events in Superconducting Devices
- URL: http://arxiv.org/abs/2407.10841v1
- Date: Mon, 15 Jul 2024 15:56:09 GMT
- Title: On the Efficacy of Surface Codes in Compensating for Radiation Events in Superconducting Devices
- Authors: Marzio Vallero, Gioele Casagranda, Flavio Vella, Paolo Rech,
- Abstract summary: We report data from over 400 million fault injections and correlate hardware faults with the logical error observed after decoding the code output.
We show that, by simply selecting and tuning properly the surface code, the probability of correcting a radiation-induced fault is increased by up to 10%.
- Score: 2.1204495827342438
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Reliability is fundamental for developing large-scale quantum computers. Since the benefit of technological advancements to the qubit's stability is saturating, algorithmic solutions, such as quantum error correction (QEC) codes, are needed to bridge the gap to reliable computation. Unfortunately, the deployment of the first quantum computers has identified faults induced by natural radiation as an additional threat to qubits reliability. The high sensitivity of qubits to radiation hinders the large-scale adoption of quantum computers, since the persistence and area-of-effect of the fault can potentially undermine the efficacy of the most advanced QEC. In this paper, we investigate the resilience of various implementations of state-of-the-art QEC codes to radiation-induced faults. We report data from over 400 million fault injections and correlate hardware faults with the logical error observed after decoding the code output, extrapolating physical-to-logical error rates. We compare the code's radiation-induced logical error rate over the code distance, the number and role in the QEC of physical qubits, the underlying quantum computer topology, and particle energy spread in the chip. We show that, by simply selecting and tuning properly the surface code, thus without introducing any overhead, the probability of correcting a radiation-induced fault is increased by up to 10\%. Finally, we provide indications and guidelines for the design of future QEC codes to further increase their effectiveness against radiation-induced events.
Related papers
- Radiation-Induced Fault Detection in Superconducting Quantum Devices [2.1204495827342438]
Cosmic-ray induced correlated errors are the most detrimental events that can impact superconducting quantum computers.<n>We propose the first algorithm to effectively exploit syndrome information for the efficient detection of radiation events in superconducting quantum devices at runtime.
arXiv Detail & Related papers (2025-06-20T08:39:16Z) - Fooling the Decoder: An Adversarial Attack on Quantum Error Correction [49.48516314472825]
In this work, we target a basic RL surface code decoder (DeepQ) to create the first adversarial attack on quantum error correction.
We demonstrate an attack that reduces the logical qubit lifetime in memory experiments by up to five orders of magnitude.
This attack highlights the susceptibility of machine learning-based QEC and underscores the importance of further research into robust QEC methods.
arXiv Detail & Related papers (2025-04-28T10:10:05Z) - Surface-code Superconducting Quantum Processors: From Calibration To Logical Performance [0.0]
Current quantum processors are fragile, noisy and fairly limited in both quantity and quality with tens of qubits and physical error rates of around 10-3.
quantum error correction (QEC) is essential to bridge this gap and fully harness the potential of quantum computers.
This thesis focuses on the implementation and optimization of small-scale QEC experiments using the surface code and flux-tunable superconducting qubits.
arXiv Detail & Related papers (2025-04-23T20:09:10Z) - Geometrical Approach to Logical Qubit Fidelities of Neutral Atom CSS Codes [0.0]
We map a quantum error correction (QEC) code to a $mathZ$ lattice gauge theory with disorder.
In this Article, we adopt this statistical mapping to predict error rate thresholds for neutral atom architecture.
arXiv Detail & Related papers (2024-09-06T14:53:30Z) - The END: An Equivariant Neural Decoder for Quantum Error Correction [73.4384623973809]
We introduce a data efficient neural decoder that exploits the symmetries of the problem.
We propose a novel equivariant architecture that achieves state of the art accuracy compared to previous neural decoders.
arXiv Detail & Related papers (2023-04-14T19:46:39Z) - Real-Time Decoding for Fault-Tolerant Quantum Computing: Progress,
Challenges and Outlook [0.8066496490637088]
We highlight some of the key challenges facing the implementation of real-time decoders.
We lay out our perspective for the future development and provide a possible roadmap for the field of real-time decoding.
arXiv Detail & Related papers (2023-02-28T19:51:03Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Applying the Quantum Error-correcting Codes for Fault-tolerant Blind
Quantum Computation [33.51070104730591]
The Blind Quantum Computation (BQC) is a delegated protocol, which allows a client to rent a remote quantum server to implement desired quantum computations.
We propose a fault-tolerant blind quantum computation protocol with quantum error-correcting codes to avoid the accumulation and propagation of qubit errors during the computing.
arXiv Detail & Related papers (2023-01-05T08:52:55Z) - QuFI: a Quantum Fault Injector to Measure the Reliability of Qubits and
Quantum Circuits [0.9322743017642274]
We propose a framework to identify the quantum circuits sensitivity to radiation-induced faults and the probability for a fault in a qubit to propagate to the output.
Our framework can inject multiple qubit faults, tuning the phase shift magnitude based on the proximity of the qubit to the particle strike location.
We report the finding of more than 285M injections on the Qiskit simulator and 53K injections on real IBM machines.
arXiv Detail & Related papers (2022-03-14T15:23:29Z) - Improved decoding of circuit noise and fragile boundaries of tailored
surface codes [61.411482146110984]
We introduce decoders that are both fast and accurate, and can be used with a wide class of quantum error correction codes.
Our decoders, named belief-matching and belief-find, exploit all noise information and thereby unlock higher accuracy demonstrations of QEC.
We find that the decoders led to a much higher threshold and lower qubit overhead in the tailored surface code with respect to the standard, square surface code.
arXiv Detail & Related papers (2022-03-09T18:48:54Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Hardware-efficient error-correcting codes for large nuclear spins [62.997667081978825]
We present a hardware-efficient quantum protocol that corrects phase flips of a nuclear spin using explicit experimentally feasible operations.
Results provide a realizable blueprint for a corrected spin-based qubit.
arXiv Detail & Related papers (2021-03-15T17:14:48Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.