Surface-code Superconducting Quantum Processors: From Calibration To Logical Performance
- URL: http://arxiv.org/abs/2504.17082v1
- Date: Wed, 23 Apr 2025 20:09:10 GMT
- Title: Surface-code Superconducting Quantum Processors: From Calibration To Logical Performance
- Authors: Hany Ali,
- Abstract summary: Current quantum processors are fragile, noisy and fairly limited in both quantity and quality with tens of qubits and physical error rates of around 10-3.<n> quantum error correction (QEC) is essential to bridge this gap and fully harness the potential of quantum computers.<n>This thesis focuses on the implementation and optimization of small-scale QEC experiments using the surface code and flux-tunable superconducting qubits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum processors are fragile, noisy and fairly limited in both quantity and quality with tens of qubits and physical error rates of around 10^-3. To realize practical quantum applications, however, error rates need to be below 10^-15 across millions of qubits. To bridge this gap and fully harness the potential of quantum computers, quantum error correction (QEC) is essential. QEC codes are designed to protect quantum information by redundantly encoding it onto multiple physical qubits. This encoding allows for the detection and correction of local errors affecting individual qubits, e.g., through stabilizer measurements. Importantly, if the physical error rates are below a specific threshold, QEC codes can exponentially suppress logical error rates by increasing the number of physical qubits involved. This is essential for achieving fault-tolerant computations, which are key to unlocking the full potential of quantum computers. The work presented in this thesis focuses on the implementation and optimization of small-scale QEC experiments using the surface code and flux-tunable superconducting qubits (Transmons). It addresses several key challenges: enhancing two-qubit gate fidelity in Surface-4 (Chapter 2), implementing an error-detection code with Surface-7 (Chapter 3), automating the calibration and benchmarking of the building blocks in Surface-17 (Chapter 4), reducing leakage into higher excited states with leakage reduction units (Chapter 5), assessing and enhancing the performance of logical qubits (Chapters 7 and 8).
Related papers
- Assessing Teleportation of Logical Qubits in a Distributed Quantum Architecture under Error Correction [4.352368481242436]
We show that logical qubits can be teleported between nodes with very low logical error rates, even with network noise in near-term regimes.<n>We use circuit-level simulations to assess physical and network noise regimes ranging from $10-1$ to $10-6$.
arXiv Detail & Related papers (2025-04-08T01:56:19Z) - Error correction of a logical qubit encoded in a single atomic ion [0.0]
Quantum error correction (QEC) is essential for quantum computers to perform useful algorithms.<n>Recent work has proposed a complementary approach of performing error correction at the single-particle level.<n>Here we demonstrate QEC in a single atomic ion that decreases errors by a factor of up to 2.2 and extends the qubit's useful lifetime by a factor of up to 1.5.
arXiv Detail & Related papers (2025-03-18T05:10:21Z) - Transversal CNOT gate with multi-cycle error correction [1.7359033750147501]
A scalable and programmable quantum computer holds the potential to solve computationally intensive tasks that computers cannot accomplish within a reasonable time frame, achieving quantum advantage.
The vulnerability of the current generation of quantum processors to errors poses a significant challenge towards executing complex and deep quantum circuits required for practical problems.
Our work establishes the feasibility of employing logical CNOT gates alongside error detection on a superconductor-based processor using current generation quantum hardware.
arXiv Detail & Related papers (2024-06-18T04:50:15Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Optimizing quantum gates towards the scale of logical qubits [78.55133994211627]
A foundational assumption of quantum gates theory is that quantum gates can be scaled to large processors without exceeding the error-threshold for fault tolerance.
Here we report on a strategy that can overcome such problems.
We demonstrate it by choreographing the frequency trajectories of 68 frequency-tunablebits to execute single qubit while superconducting errors.
arXiv Detail & Related papers (2023-08-04T13:39:46Z) - Compilation of a simple chemistry application to quantum error correction primitives [44.99833362998488]
We estimate the resources required to fault-tolerantly perform quantum phase estimation on a minimal chemical example.
We find that implementing even a simple chemistry circuit requires 1,000 qubits and 2,300 quantum error correction rounds.
arXiv Detail & Related papers (2023-07-06T18:00:10Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Suppressing quantum errors by scaling a surface code logical qubit [147.2624260358795]
We report the measurement of logical qubit performance scaling across multiple code sizes.
Our system of superconducting qubits has sufficient performance to overcome the additional errors from increasing qubit number.
Results mark the first experimental demonstration where quantum error correction begins to improve performance with increasing qubit number.
arXiv Detail & Related papers (2022-07-13T18:00:02Z) - Simulation of the five-qubit quantum error correction code on
superconducting qubits [0.0]
We propose a circuit based on the minimal distance-3 QEC code, which requires only 5 data qubits and 5 ancilla qubits.
Thanks to its smaller footprint, the proposed code has a lower logical error rate than Surface-17 for similar physical error rates.
arXiv Detail & Related papers (2021-07-14T05:29:59Z) - QECOOL: On-Line Quantum Error Correction with a Superconducting Decoder
for Surface Code [2.2749157557381245]
Surface code (SC) associated with its decoding algorithm is one of the most promising quantum error correction (QEC) methods.
In this paper, we propose an online-QEC algorithm and its hardware implementation with superconducting digital circuits.
Our decoder is simulated on a quantum error simulator for code 5 to 13 and achieves a 1.0% accuracy threshold.
arXiv Detail & Related papers (2021-03-26T01:51:15Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.