The One RING: a Robotic Indoor Navigation Generalist
- URL: http://arxiv.org/abs/2412.14401v1
- Date: Wed, 18 Dec 2024 23:15:41 GMT
- Title: The One RING: a Robotic Indoor Navigation Generalist
- Authors: Ainaz Eftekhar, Luca Weihs, Rose Hendrix, Ege Caglar, Jordi Salvador, Alvaro Herrasti, Winson Han, Eli VanderBil, Aniruddha Kembhavi, Ali Farhadi, Ranjay Krishna, Kiana Ehsani, Kuo-Hao Zeng,
- Abstract summary: RING (Robotic Indoor Navigation Generalist) is an embodiment-agnostic policy.
It is trained solely in simulation with diverse randomly embodiments at scale.
It achieves an average of 72.1% and 78.9% success rate across 5 embodiments in simulation and 4 robot platforms in the real world.
- Score: 58.431772508378344
- License:
- Abstract: Modern robots vary significantly in shape, size, and sensor configurations used to perceive and interact with their environments. However, most navigation policies are embodiment-specific; a policy learned using one robot's configuration does not typically gracefully generalize to another. Even small changes in the body size or camera viewpoint may cause failures. With the recent surge in custom hardware developments, it is necessary to learn a single policy that can be transferred to other embodiments, eliminating the need to (re)train for each specific robot. In this paper, we introduce RING (Robotic Indoor Navigation Generalist), an embodiment-agnostic policy, trained solely in simulation with diverse randomly initialized embodiments at scale. Specifically, we augment the AI2-THOR simulator with the ability to instantiate robot embodiments with controllable configurations, varying across body size, rotation pivot point, and camera configurations. In the visual object-goal navigation task, RING achieves robust performance on real unseen robot platforms (Stretch RE-1, LoCoBot, Unitree's Go1), achieving an average of 72.1% and 78.9% success rate across 5 embodiments in simulation and 4 robot platforms in the real world. (project website: https://one-ring-policy.allen.ai/)
Related papers
- Sim-to-Real Transfer for Mobile Robots with Reinforcement Learning: from NVIDIA Isaac Sim to Gazebo and Real ROS 2 Robots [1.2773537446441052]
This article focuses on demonstrating the applications of Isaac in local planning and obstacle avoidance.
We benchmark end-to-end policies with the state-of-the-art Nav2, navigation stack in Robot Operating System (ROS)
We also cover the sim-to-real transfer process by demonstrating zero-shot transferability of policies trained in the Isaac simulator to real-world robots.
arXiv Detail & Related papers (2025-01-06T10:26:16Z) - Scaling Cross-Embodied Learning: One Policy for Manipulation, Navigation, Locomotion and Aviation [49.03165169369552]
By training a single policy across many different kinds of robots, a robot learning method can leverage much broader and more diverse datasets.
We propose CrossFormer, a scalable and flexible transformer-based policy that can consume data from any embodiment.
We demonstrate that the same network weights can control vastly different robots, including single and dual arm manipulation systems, wheeled robots, quadcopters, and quadrupeds.
arXiv Detail & Related papers (2024-08-21T17:57:51Z) - GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - Octo: An Open-Source Generalist Robot Policy [88.14295917143188]
We introduce Octo, a large transformer-based policy trained on 800k trajectories from the Open X-Embodiment dataset.
It can be effectively finetuned to robot setups with new sensory inputs and action spaces within a few hours on standard consumer GPU.
We also perform detailed ablations of design decisions for the Octo model, from architecture to training data, to guide future research on building generalist robot models.
arXiv Detail & Related papers (2024-05-20T17:57:01Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
This paper presents textbfRobotScript, a platform for a deployable robot manipulation pipeline powered by code generation.
We also present a benchmark for a code generation benchmark for robot manipulation tasks in free-form natural language.
We demonstrate the adaptability of our code generation framework across multiple robot embodiments, including the Franka and UR5 robot arms.
arXiv Detail & Related papers (2024-02-22T15:12:00Z) - Polybot: Training One Policy Across Robots While Embracing Variability [70.74462430582163]
We propose a set of key design decisions to train a single policy for deployment on multiple robotic platforms.
Our framework first aligns the observation and action spaces of our policy across embodiments via utilizing wrist cameras.
We evaluate our method on a dataset collected over 60 hours spanning 6 tasks and 3 robots with varying joint configurations and sizes.
arXiv Detail & Related papers (2023-07-07T17:21:16Z) - GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots [87.32145104894754]
We introduce a framework for training generalized locomotion (GenLoco) controllers for quadrupedal robots.
Our framework synthesizes general-purpose locomotion controllers that can be deployed on a large variety of quadrupedal robots.
We show that our models acquire more general control strategies that can be directly transferred to novel simulated and real-world robots.
arXiv Detail & Related papers (2022-09-12T15:14:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.