論文の概要: MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias
- arxiv url: http://arxiv.org/abs/2407.11002v2
- Date: Thu, 24 Oct 2024 11:28:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 21:21:36.900171
- Title: MoESD: Mixture of Experts Stable Diffusion to Mitigate Gender Bias
- Title(参考訳): MoESD:ジェンダーバイアスを緩和する専門家の拡散を安定させる
- Authors: Guorun Wang, Lucia Specia,
- Abstract要約: テキスト・ツー・イメージ・モデルにおいて、ジェンダーバイアスを軽減するためのMixture-of-Expertsアプローチを導入する。
画像品質を維持しながら, 性別偏見の軽減に成功していることを示す。
- 参考スコア(独自算出の注目度): 23.10522891268232
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Text-to-image models are known to propagate social biases. For example, when prompted to generate images of people in certain professions, these models tend to systematically generate specific genders or ethnicities. In this paper, we show that this bias is already present in the text encoder of the model and introduce a Mixture-of-Experts approach by identifying text-encoded bias in the latent space and then creating a Bias-Identification Gate mechanism. More specifically, we propose MoESD (Mixture of Experts Stable Diffusion) with BiAs (Bias Adapters) to mitigate gender bias in text-to-image models. We also demonstrate that introducing an arbitrary special token to the prompt is essential during the mitigation process. With experiments focusing on gender bias, we show that our approach successfully mitigates gender bias while maintaining image quality.
- Abstract(参考訳): テキスト・ツー・イメージのモデルは、社会的偏見を伝播させることで知られている。
例えば、特定の職業の人々のイメージを生成するように促されると、これらのモデルは特定の性別や民族を体系的に生成する傾向がある。
本稿では,このバイアスがモデルのテキストエンコーダにすでに存在していることを示し,テキストエンコードされたバイアスを潜在空間で識別し,バイアス識別ゲート機構を作成することで,Mixture-of-Expertsアプローチを導入する。
具体的には,MoESD (Mixture of Experts Stable Diffusion) をBiAs (Bias Adapters) で提案し,テキスト・画像モデルにおける性別バイアスを軽減する。
また、緩和プロセスにおいて、任意の特別なトークンをプロンプトに導入することが不可欠であることを示す。
性別バイアスに着目した実験により, 画像品質を維持しながら, 性別バイアスを軽減できることが示唆された。
関連論文リスト
- GradBias: Unveiling Word Influence on Bias in Text-to-Image Generative Models [75.04426753720553]
開集合におけるバイアスを特定し,定量化し,説明するための枠組みを提案する。
このパイプラインはLarge Language Model (LLM)を活用して、一連のキャプションから始まるバイアスを提案する。
このフレームワークには、OpenBiasとGradBiasの2つのバリエーションがあります。
論文 参考訳(メタデータ) (2024-08-29T16:51:07Z) - Gender Bias Evaluation in Text-to-image Generation: A Survey [25.702257177921048]
テキスト・ツー・イメージ・ジェネレーションにおけるジェンダーバイアス評価に関する最近の研究についてレビューする。
安定拡散やDALL-E 2といった最近の人気モデルの評価に焦点をあてる。
論文 参考訳(メタデータ) (2024-08-21T06:01:23Z) - MIST: Mitigating Intersectional Bias with Disentangled Cross-Attention Editing in Text-to-Image Diffusion Models [3.3454373538792552]
本稿では,拡散型テキスト・画像モデルにおける交叉バイアスに対処する手法を提案する。
提案手法では,事前学習した安定拡散モデルを用いて,参照画像の追加の必要性を排除し,未修正概念の本来の品質を維持する。
論文 参考訳(メタデータ) (2024-03-28T17:54:38Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
本稿では,Paired Stereotype Test (PST) フレームワークを提案する。
PSTクエリT2Iモデルは、男性ステレオタイプと女性ステレオタイプに割り当てられた2つの個人を描写する。
PSTを用いて、ジェンダーバイアスの2つの側面、つまり、ジェンダーの職業におけるよく知られたバイアスと、組織力におけるバイアスという新しい側面を評価する。
論文 参考訳(メタデータ) (2024-02-16T21:32:27Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Balancing the Picture: Debiasing Vision-Language Datasets with Synthetic
Contrast Sets [52.77024349608834]
視覚言語モデルは、インターネットから未計算の画像テキストペアの事前トレーニング中に学んだ社会的バイアスを永続し、増幅することができる。
COCO Captionsは、背景コンテキストとその場にいる人々の性別間のバイアスを評価するために最も一般的に使用されるデータセットである。
本研究では,COCOデータセットを男女バランスの取れたコントラストセットで拡張する新しいデータセットデバイアスパイプラインを提案する。
論文 参考訳(メタデータ) (2023-05-24T17:59:18Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
我々は、テキスト・ツー・イメージ・モデルにおいて、ジェンダーがどのように異なる形で提示されるかを研究する。
入力テキスト中の性指標を探索することにより、プレゼンテーション中心属性の周波数差を定量化する。
このような違いを推定する自動手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T18:52:22Z) - Are Gender-Neutral Queries Really Gender-Neutral? Mitigating Gender Bias
in Image Search [8.730027941735804]
我々は、画像検索において、独特なジェンダーバイアスを研究する。
検索画像は、ジェンダーニュートラルな自然言語クエリに対して、しばしば性別不均衡である。
我々は2つの新しいデバイアスのアプローチを導入する。
論文 参考訳(メタデータ) (2021-09-12T04:47:33Z) - Understanding and Mitigating Annotation Bias in Facial Expression
Recognition [3.325054486984015]
現存する多くの著作は、人為的なアノテーションは金本位制であり、偏見のないものと見なすことができると仮定している。
顔の表情認識に焦点をあて、実験室で制御されたデータセットと現場のデータセットのラベルバイアスを比較する。
本稿では,顔動作単位(AU)を活用し,三重項損失を対象関数に組み込むAU校正顔表情認識フレームワークを提案する。
論文 参考訳(メタデータ) (2021-08-19T05:28:07Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
本稿では,文脈言語モデルにおける性別バイアスの定量化と分析を行う,スキューとステレオタイプという2つの直感的な指標を提案する。
性別のステレオタイプは、アウト・オブ・ボックスモデルにおける性別の歪とほぼ負の相関関係にあり、これらの2種類のバイアスの間にトレードオフが存在することを示唆している。
論文 参考訳(メタデータ) (2021-01-24T10:57:59Z) - Mitigating Gender Bias in Captioning Systems [56.25457065032423]
ほとんどのキャプションモデルは性別バイアスを学習し、特に女性にとって高い性別予測エラーにつながる。
本稿では, 視覚的注意を自己指導し, 正しい性的な視覚的証拠を捉えるためのガイド付き注意画像キャプチャーモデル(GAIC)を提案する。
論文 参考訳(メタデータ) (2020-06-15T12:16:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。