Using Large Language Models in Public Transit Systems, San Antonio as a case study
- URL: http://arxiv.org/abs/2407.11003v1
- Date: Tue, 25 Jun 2024 16:32:56 GMT
- Title: Using Large Language Models in Public Transit Systems, San Antonio as a case study
- Authors: Ramya Jonnala, Gongbo Liang, Jeong Yang, Izzat Alsmadi,
- Abstract summary: This study examines the impact of large language models within San Antonio's public transit system.
The research highlights the transformative potential of LLMs in enhancing route planning, reducing wait times, and providing personalized travel assistance.
- Score: 1.7740414468805545
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of large language models into public transit systems represents a significant advancement in urban transportation management and passenger experience. This study examines the impact of LLMs within San Antonio's public transit system, leveraging their capabilities in natural language processing, data analysis, and real time communication. By utilizing GTFS and other public transportation information, the research highlights the transformative potential of LLMs in enhancing route planning, reducing wait times, and providing personalized travel assistance. Our case study is the city of San Antonio as part of a project aiming to demonstrate how LLMs can optimize resource allocation, improve passenger satisfaction, and support decision making processes in transit management. We evaluated LLM responses to questions related to both information retrieval and also understanding. Ultimately, we believe that the adoption of LLMs in public transit systems can lead to more efficient, responsive, and user-friendly transportation networks, providing a model for other cities to follow.
Related papers
- Leveraging Large Language Models for Enhancing Public Transit Services [12.6020349733674]
This paper explores the utilization of Large Language Models (LLMs) in the public transit system.
Three transit LLM applications are presented: Tweet Writer, Trip Advisor, and Policy Navigator.
arXiv Detail & Related papers (2024-10-18T03:33:47Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
Large language models (LLMs) and their associated technologies advance, particularly in the realms of prompt engineering and agent engineering.
This approach entails the strategic use of well-crafted prompts to infuse human experience and knowledge into these sophisticated LLMs.
This integration represents the future paradigm of artificial intelligence (AI) as a service and AI for more ease.
arXiv Detail & Related papers (2024-08-07T08:43:32Z) - Large Language Models for Mobility in Transportation Systems: A Survey on Forecasting Tasks [8.548422411704218]
Machine learning and deep learning methods are favored for their flexibility and accuracy.
With the advent of large language models (LLMs), many researchers have combined these models with previous techniques or applied LLMs to directly predict future traffic information and human travel behaviors.
arXiv Detail & Related papers (2024-05-03T02:54:43Z) - TransportationGames: Benchmarking Transportation Knowledge of
(Multimodal) Large Language Models [46.862519898969325]
TransportationGames is an evaluation benchmark for assessing (M)LLMs in the transportation domain.
We test the performance of various (M)LLMs in memorizing, understanding, and applying transportation knowledge by the selected tasks.
arXiv Detail & Related papers (2024-01-09T10:20:29Z) - Receive, Reason, and React: Drive as You Say with Large Language Models
in Autonomous Vehicles [13.102404404559428]
We propose a novel framework that leverages Large Language Models (LLMs) to enhance the decision-making process in autonomous vehicles.
Our research includes experiments in HighwayEnv, a collection of environments for autonomous driving and tactical decision-making tasks.
We also examine real-time personalization, demonstrating how LLMs can influence driving behaviors based on verbal commands.
arXiv Detail & Related papers (2023-10-12T04:56:01Z) - Let Models Speak Ciphers: Multiagent Debate through Embeddings [84.20336971784495]
We introduce CIPHER (Communicative Inter-Model Protocol Through Embedding Representation) to address this issue.
By deviating from natural language, CIPHER offers an advantage of encoding a broader spectrum of information without any modification to the model weights.
This showcases the superiority and robustness of embeddings as an alternative "language" for communication among LLMs.
arXiv Detail & Related papers (2023-10-10T03:06:38Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - How Can Recommender Systems Benefit from Large Language Models: A Survey [82.06729592294322]
Large language models (LLM) have shown impressive general intelligence and human-like capabilities.
We conduct a comprehensive survey on this research direction from the perspective of the whole pipeline in real-world recommender systems.
arXiv Detail & Related papers (2023-06-09T11:31:50Z) - AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap [46.98582021477066]
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large.
We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly.
It is paramount to pursue new approaches to provide transparency for LLMs.
arXiv Detail & Related papers (2023-06-02T22:51:26Z) - Unavailable Transit Feed Specification: Making it Available with
Recurrent Neural Networks [8.968417883198374]
In general, the demand for public transport services, with an increasing reluctance to use them, is their quality.
The approach proposed in this paper, using innovative methodologies resorting on data mining and machine learning techniques, aims to make available the unavailable data about public transport.
arXiv Detail & Related papers (2021-02-20T12:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.