Exploring the Potential of Large Language Models in Public Transportation: San Antonio Case Study
- URL: http://arxiv.org/abs/2501.03904v1
- Date: Tue, 07 Jan 2025 16:18:55 GMT
- Title: Exploring the Potential of Large Language Models in Public Transportation: San Antonio Case Study
- Authors: Ramya Jonnala, Gongbo Liang, Jeong Yang, Izzat Alsmadi,
- Abstract summary: This study explores the potential of large language models (LLMs) to revolutionize public transportation management within the context of San Antonio's transit system.
We investigate their capabilities to optimize route planning, reduce wait times, and provide personalized travel assistance.
- Score: 1.7740414468805545
- License:
- Abstract: The integration of large language models (LLMs) into public transit systems presents a transformative opportunity to enhance urban mobility. This study explores the potential of LLMs to revolutionize public transportation management within the context of San Antonio's transit system. Leveraging the capabilities of LLMs in natural language processing and data analysis, we investigate their capabilities to optimize route planning, reduce wait times, and provide personalized travel assistance. By utilizing the General Transit Feed Specification (GTFS) and other relevant data, this research aims to demonstrate how LLMs can potentially improve resource allocation, elevate passenger satisfaction, and inform data-driven decision-making in transit operations. A comparative analysis of different ChatGPT models was conducted to assess their ability to understand transportation information, retrieve relevant data, and provide comprehensive responses. Findings from this study suggest that while LLMs hold immense promise for public transit, careful engineering and fine-tuning are essential to realizing their full potential. San Antonio serves as a case study to inform the development of LLM-powered transit systems in other urban environments.
Related papers
- Strada-LLM: Graph LLM for traffic prediction [62.2015839597764]
A considerable challenge in traffic prediction lies in handling the diverse data distributions caused by vastly different traffic conditions.
We propose a graph-aware LLM for traffic prediction that considers proximal traffic information.
We adopt a lightweight approach for efficient domain adaptation when facing new data distributions in few-shot fashion.
arXiv Detail & Related papers (2024-10-28T09:19:29Z) - Leveraging Large Language Models for Enhancing Public Transit Services [12.6020349733674]
This paper explores the utilization of Large Language Models (LLMs) in the public transit system.
Three transit LLM applications are presented: Tweet Writer, Trip Advisor, and Policy Navigator.
arXiv Detail & Related papers (2024-10-18T03:33:47Z) - Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - Beyond Words: Evaluating Large Language Models in Transportation Planning [0.0]
This study investigates the evaluation of Large Language Models (LLMs), specifically GPT-4 and Phi-3-mini, to enhance transportation planning.
The findings underscore the transformative potential of GenAI technologies in urban transportation planning.
arXiv Detail & Related papers (2024-09-22T16:20:00Z) - Using Large Language Models in Public Transit Systems, San Antonio as a case study [1.7740414468805545]
This study examines the impact of large language models within San Antonio's public transit system.
The research highlights the transformative potential of LLMs in enhancing route planning, reducing wait times, and providing personalized travel assistance.
arXiv Detail & Related papers (2024-06-25T16:32:56Z) - Large Language Models for Mobility in Transportation Systems: A Survey on Forecasting Tasks [8.548422411704218]
Machine learning and deep learning methods are favored for their flexibility and accuracy.
With the advent of large language models (LLMs), many researchers have combined these models with previous techniques or applied LLMs to directly predict future traffic information and human travel behaviors.
arXiv Detail & Related papers (2024-05-03T02:54:43Z) - Reliable, Adaptable, and Attributable Language Models with Retrieval [144.26890121729514]
Parametric language models (LMs) are trained on vast amounts of web data.
They face practical challenges such as hallucinations, difficulty in adapting to new data distributions, and a lack of verifiability.
We advocate for retrieval-augmented LMs to replace parametric LMs as the next generation of LMs.
arXiv Detail & Related papers (2024-03-05T18:22:33Z) - TransportationGames: Benchmarking Transportation Knowledge of
(Multimodal) Large Language Models [46.862519898969325]
TransportationGames is an evaluation benchmark for assessing (M)LLMs in the transportation domain.
We test the performance of various (M)LLMs in memorizing, understanding, and applying transportation knowledge by the selected tasks.
arXiv Detail & Related papers (2024-01-09T10:20:29Z) - AI Transparency in the Age of LLMs: A Human-Centered Research Roadmap [46.98582021477066]
The rise of powerful large language models (LLMs) brings about tremendous opportunities for innovation but also looming risks for individuals and society at large.
We have reached a pivotal moment for ensuring that LLMs and LLM-infused applications are developed and deployed responsibly.
It is paramount to pursue new approaches to provide transparency for LLMs.
arXiv Detail & Related papers (2023-06-02T22:51:26Z) - Berlin V2X: A Machine Learning Dataset from Multiple Vehicles and Radio
Access Technologies [56.77079930521082]
We have conducted a detailed measurement campaign that paves the way to a plethora of diverse ML-based studies.
The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies.
We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage.
arXiv Detail & Related papers (2022-12-20T15:26:39Z) - Unavailable Transit Feed Specification: Making it Available with
Recurrent Neural Networks [8.968417883198374]
In general, the demand for public transport services, with an increasing reluctance to use them, is their quality.
The approach proposed in this paper, using innovative methodologies resorting on data mining and machine learning techniques, aims to make available the unavailable data about public transport.
arXiv Detail & Related papers (2021-02-20T12:17:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.