論文の概要: Does ChatGPT Have a Mind?
- arxiv url: http://arxiv.org/abs/2407.11015v1
- Date: Thu, 27 Jun 2024 00:21:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-07-22 12:29:47.726743
- Title: Does ChatGPT Have a Mind?
- Title(参考訳): ChatGPTは心を持っているか?
- Authors: Simon Goldstein, Benjamin A. Levinstein,
- Abstract要約: 本稿では,ChatGPT のような大規模言語モデル (LLM) が,信念,願望,意図を包含する真の民間心理学を持っているか否かに着目し,心を持っているかどうかを検討する。
まず, 情報, 因果, 構造, テレオセマンティックな説明を含む様々な哲学的表現理論を調査し, LLMがそれぞれの提案する重要な条件を満たすことを論じる。
第2に, LLM が行動に頑健な態度を示すか否かを考察する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper examines the question of whether Large Language Models (LLMs) like ChatGPT possess minds, focusing specifically on whether they have a genuine folk psychology encompassing beliefs, desires, and intentions. We approach this question by investigating two key aspects: internal representations and dispositions to act. First, we survey various philosophical theories of representation, including informational, causal, structural, and teleosemantic accounts, arguing that LLMs satisfy key conditions proposed by each. We draw on recent interpretability research in machine learning to support these claims. Second, we explore whether LLMs exhibit robust dispositions to perform actions, a necessary component of folk psychology. We consider two prominent philosophical traditions, interpretationism and representationalism, to assess LLM action dispositions. While we find evidence suggesting LLMs may satisfy some criteria for having a mind, particularly in game-theoretic environments, we conclude that the data remains inconclusive. Additionally, we reply to several skeptical challenges to LLM folk psychology, including issues of sensory grounding, the "stochastic parrots" argument, and concerns about memorization. Our paper has three main upshots. First, LLMs do have robust internal representations. Second, there is an open question to answer about whether LLMs have robust action dispositions. Third, existing skeptical challenges to LLM representation do not survive philosophical scrutiny.
- Abstract(参考訳): 本稿では,ChatGPT のような大規模言語モデル (LLM) が,信念,願望,意図を包含する真の民間心理学を持っているかどうかに焦点をあてる。
我々は、内部表現と行動のための配置という2つの重要な側面を調査することによって、この問題にアプローチする。
まず, 情報, 因果, 構造, テレオセマンティックな説明を含む様々な哲学的表現理論を調査し, LLMがそれぞれの提案する重要な条件を満たすことを論じる。
これらの主張をサポートするために、機械学習における最近の解釈可能性の研究を取り上げている。
第2に, LLM が行動に頑健な態度を示すか否かを考察する。
LLMの行動配置を評価するために、解釈主義と表現主義という2つの顕著な哲学的伝統を考察する。
LLMが心を持つためのいくつかの基準を満たすことを示す証拠は、特にゲーム理論環境において発見されるが、データは決定的ではないと結論づける。
さらに,LLMの民間心理学に対する懐疑的な問題として,感覚基盤の問題,「確率的オウム」論,記憶に関する懸念などを挙げる。
私たちの論文には3つのメインショットがあります。
まず、LLMは堅牢な内部表現を持つ。
第二に、LSMが堅牢な作用配置を持つかどうかについて、答える自由な疑問がある。
第3に、LLM表現に対する既存の懐疑的な課題は、哲学的な精査を生き残らない。
関連論文リスト
- How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition [75.11808682808065]
本研究では,大言語モデル (LLM) が意味的サイズを理解する上で類似した傾向を示すかどうかを検討する。
以上の結果から,マルチモーダルトレーニングはLLMにとって人間的な理解を深める上で不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
論文 参考訳(メタデータ) (2025-03-01T03:35:56Z) - Empowering LLMs with Logical Reasoning: A Comprehensive Survey [49.91445266392609]
大規模言語モデル(LLM)は、様々な自然言語タスクにおいて顕著な成功を収めた。
近年の研究では、LLMの論理的推論能力にはまだ大きな課題があることがわかった。
本稿では,主な課題を2つの側面にまとめ,分類する。
論文 参考訳(メタデータ) (2025-02-21T18:20:35Z) - ToMATO: Verbalizing the Mental States of Role-Playing LLMs for Benchmarking Theory of Mind [25.524355451378593]
ToMATOは、会話よりもマルチチョイスQAとして定式化された新しいToMベンチマークである。
私たちは、信念、意図、欲望、感情、知識の5つのカテゴリにまたがって、一階と二階の精神状態を取ります。
ToMATOは5.4kの質問、753の会話、15の性格特性パターンで構成されている。
論文 参考訳(メタデータ) (2025-01-15T14:47:02Z) - Understanding the Dark Side of LLMs' Intrinsic Self-Correction [55.51468462722138]
LLMの応答を改善するために,本質的な自己補正法が提案された。
近年の研究では、LLMの内在的な自己補正は、フィードバックのプロンプトとして、オラクルラベルなしで失敗することが示されている。
内在的な自己補正は、中途半端な回答と最終回答の両方を LLM が揺らぎ、単純な事実的質問に対する素早い偏見をもたらす可能性がある。
論文 参考訳(メタデータ) (2024-12-19T15:39:31Z) - Are LLMs Aware that Some Questions are not Open-ended? [58.93124686141781]
大規模言語モデルでは、いくつかの質問が限定的な回答を持ち、より決定論的に答える必要があることを認識しているかどうかを調査する。
LLMにおける疑問認識の欠如は,(1)非オープンな質問に答えるにはカジュアルすぎる,(2)オープンな質問に答えるには退屈すぎる,という2つの現象をもたらす。
論文 参考訳(メタデータ) (2024-10-01T06:07:00Z) - LaMsS: When Large Language Models Meet Self-Skepticism [3.1410859223862113]
本稿では,大規模言語モデルの意味理解能力と自己懐疑性を組み合わせたLaMsSを提案する。
LaMsSは、マルチ選択質問とオープンドメイン質問回答ベンチマークの両方のベースラインよりも優れたパフォーマンスを実現している。
我々の研究は、さらなる人工知能の自己懐疑論モデルに光を当てている。
論文 参考訳(メタデータ) (2024-09-10T15:51:15Z) - Cognitive phantoms in LLMs through the lens of latent variables [0.3441021278275805]
大規模言語モデル(LLM)はますます現実のアプリケーションに到達し、それらの振る舞いをよりよく理解する必要がある。
近年のLCMに対する心理測定調査では、LLMの人間らしい特徴が報告されており、潜在的に影響する可能性がある。
このアプローチは有効性の問題に悩まされており、これらの特性がLLMに存在し、人間用に設計されたツールで測定可能であることを前提としている。
本研究では,人間と3人のLDMの潜在的性格構造を2つの評価されたパーソナリティアンケートを用いて比較することにより,この問題を考察する。
論文 参考訳(メタデータ) (2024-09-06T12:42:35Z) - LLM Internal States Reveal Hallucination Risk Faced With a Query [62.29558761326031]
人間は、クエリに直面したとき、私たちが知らないことを認識できる自己認識プロセスを持っています。
本稿では,大規模言語モデルが応答生成に先立って,自身の幻覚リスクを推定できるかどうかを検討する。
確率推定器により, LLM自己評価を利用して, 平均幻覚推定精度84.32%を達成する。
論文 参考訳(メタデータ) (2024-07-03T17:08:52Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - Through the Theory of Mind's Eye: Reading Minds with Multimodal Video Large Language Models [52.894048516550065]
ビデオとテキストを用いたマルチモーダルToM推論のためのパイプラインを開発する。
また、ToM質問に応答するキーフレームを検索することで、明示的なToM推論を可能にする。
論文 参考訳(メタデータ) (2024-06-19T18:24:31Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
大規模言語モデル(LLM)は、重要な現実世界のアプリケーションに統合される。
本稿では,LLMの競合環境における推論能力について検討する。
まず,広く認識されている10のタスクを構成する言語駆動型環境であるGTBenchを提案する。
論文 参考訳(メタデータ) (2024-02-19T18:23:36Z) - Large Language Models: The Need for Nuance in Current Debates and a
Pragmatic Perspective on Understanding [1.3654846342364308]
LLM(Large Language Models)は、文法的に正しい、流動的なテキストを生成する能力において、非並列である。
本論文は,LLM能力の批判において再発する3点を批判的に評価する。
LLMにおける現実の理解と意図の問題に関する実践的な視点を概説する。
論文 参考訳(メタデータ) (2023-10-30T15:51:04Z) - Encouraging Divergent Thinking in Large Language Models through Multi-Agent Debate [85.3444184685235]
複数のエージェントが"tit for tat"の状態で議論を表現するマルチエージェント議論(MAD)フレームワークを提案し、審査員が議論プロセスを管理して最終解を得る。
我々のフレームワークは、深い熟考を必要とするタスクに役立ちそうなLSMにおける散発的思考を奨励する。
論文 参考訳(メタデータ) (2023-05-30T15:25:45Z) - Can ChatGPT Defend its Belief in Truth? Evaluating LLM Reasoning via
Debate [19.887103433032774]
大規模言語モデル(LLM)は複雑な推論タスクにおいて顕著なパフォーマンスを示している。
この研究は、LLMの推論を議論のような会話で議論することで検証する。
優れたパフォーマンスにもかかわらず、ChatGPTのようなLLMは、かなりの例において、真実に対する信念を維持できないことに気付きました。
論文 参考訳(メタデータ) (2023-05-22T15:47:31Z) - Are LLMs the Master of All Trades? : Exploring Domain-Agnostic Reasoning
Skills of LLMs [0.0]
本研究では,大規模言語モデル(LLM)の性能について,様々な推論課題について検討する。
その結果, LLMは類推的, 道徳的推論において優れているが, 空間的推論タスクにおいて, 熟達に苦慮していることが明らかとなった。
論文 参考訳(メタデータ) (2023-03-22T22:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。