論文の概要: How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition
- arxiv url: http://arxiv.org/abs/2503.00330v1
- Date: Sat, 01 Mar 2025 03:35:56 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-05 19:20:38.551668
- Title: How Deep is Love in LLMs' Hearts? Exploring Semantic Size in Human-like Cognition
- Title(参考訳): LLMの心はどんなに深いか? 人間のような認知のセマンティックサイズを探る
- Authors: Yao Yao, Yifei Yang, Xinbei Ma, Dongjie Yang, Zhuosheng Zhang, Zuchao Li, Hai Zhao,
- Abstract要約: 本研究では,大言語モデル (LLM) が意味的サイズを理解する上で類似した傾向を示すかどうかを検討する。
以上の結果から,マルチモーダルトレーニングはLLMにとって人間的な理解を深める上で不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
- 参考スコア(独自算出の注目度): 75.11808682808065
- License:
- Abstract: How human cognitive abilities are formed has long captivated researchers. However, a significant challenge lies in developing meaningful methods to measure these complex processes. With the advent of large language models (LLMs), which now rival human capabilities in various domains, we are presented with a unique testbed to investigate human cognition through a new lens. Among the many facets of cognition, one particularly crucial aspect is the concept of semantic size, the perceived magnitude of both abstract and concrete words or concepts. This study seeks to investigate whether LLMs exhibit similar tendencies in understanding semantic size, thereby providing insights into the underlying mechanisms of human cognition. We begin by exploring metaphorical reasoning, comparing how LLMs and humans associate abstract words with concrete objects of varying sizes. Next, we examine LLMs' internal representations to evaluate their alignment with human cognitive processes. Our findings reveal that multi-modal training is crucial for LLMs to achieve more human-like understanding, suggesting that real-world, multi-modal experiences are similarly vital for human cognitive development. Lastly, we examine whether LLMs are influenced by attention-grabbing headlines with larger semantic sizes in a real-world web shopping scenario. The results show that multi-modal LLMs are more emotionally engaged in decision-making, but this also introduces potential biases, such as the risk of manipulation through clickbait headlines. Ultimately, this study offers a novel perspective on how LLMs interpret and internalize language, from the smallest concrete objects to the most profound abstract concepts like love. The insights gained not only improve our understanding of LLMs but also provide new avenues for exploring the cognitive abilities that define human intelligence.
- Abstract(参考訳): 人間の認知能力がどのように形成されるかは、長い間研究者を魅了してきた。
しかし、重要な課題は、これらの複雑なプロセスを測定する意味のある方法を開発することである。
様々な領域における人間の能力と競合する大規模言語モデル(LLM)の出現に伴い、我々は新しいレンズを通して人間の認知を調査するためのユニークなテストベッドを提示する。
認知の多くの側面のうち、特に重要な側面は意味的サイズの概念であり、抽象語や具体的語や概念の知覚的な大きさである。
本研究は,LLMが意味的大きさの理解に類似した傾向を示すかどうかを考察し,人間の認知の基盤となるメカニズムについて考察する。
まず、比喩的推論を探求し、LLMと人間がどのように抽象語と様々な大きさの具体的対象を関連付けるかを比較する。
次に,LLMの内部表現について検討し,人間の認知過程との整合性を評価する。
以上の結果から,LLMにとってマルチモーダルトレーニングは人間的な理解を深める上で重要であることが示唆され,実世界におけるマルチモーダル体験が人間の認知発達に不可欠であることが示唆された。
最後に,LLMが実世界のWebショッピングシナリオにおいて,より大きなセマンティックサイズを持つ注目の見出しに影響されているかを検討する。
その結果,マルチモーダル LLM はより感情的に意思決定に従事していることがわかったが,これはまた,クリックベイト見出しによる操作のリスクのような潜在的なバイアスももたらした。
究極的には、この研究はLLMが最小の具体的な物体から愛のような最も深い抽象概念まで、いかに言語を解釈し、内部化するかという新しい視点を提供する。
LLMの理解を深めるだけでなく、人間の知性を定義する認知能力の探求にも新たな道が開かれた。
関連論文リスト
- Refine Knowledge of Large Language Models via Adaptive Contrastive Learning [54.61213933999464]
方法の主流は、大規模言語モデルの知識表現を最適化することで幻覚を減らすことである。
知識を精錬するモデルのプロセスは、人間の学習方法から大きな恩恵を受けることができると私たちは信じています。
人間の学習過程を模倣することで,適応的コントラスト学習戦略を設計する。
論文 参考訳(メタデータ) (2025-02-11T02:19:13Z) - The Essence of Contextual Understanding in Theory of Mind: A Study on Question Answering with Story Characters [67.61587661660852]
理論・オブ・ミンド(ToM)は、人間が他者の精神状態を理解し解釈することを可能にする。
本稿では,ToMにおける長期的個人的背景を理解することの重要性を検証する。
現実的な評価シナリオにおける機械のToM能力の評価を行う。
論文 参考訳(メタデータ) (2025-01-03T09:04:45Z) - Humanlike Cognitive Patterns as Emergent Phenomena in Large Language Models [2.9312156642007294]
我々は、意思決定バイアス、推論、創造性の3つの重要な認知領域にわたって、大規模言語モデルの能力を体系的にレビューする。
意思決定では、LSMはいくつかの人間のようなバイアスを示すが、人間の観察するバイアスは欠落している。
GPT-4のような先進的なLCMは、人間のシステム2思考に似た熟考的推論を示し、小さなモデルは人間レベルの性能に欠ける。
LLMはストーリーテリングのような言語ベースの創造的なタスクに優れているが、現実の文脈を必要とする散発的な思考タスクに苦労する。
論文 参考訳(メタデータ) (2024-12-20T02:26:56Z) - A Perspective on Large Language Models, Intelligent Machines, and Knowledge Acquisition [0.6138671548064355]
大言語モデル(LLM)は「知識」を生成できることで知られている。
しかし、抽象概念と推論を理解するためのLLMと人間の能力の間には大きなギャップがある。
我々はこれらの問題を、人間の知識獲得とチューリングテストの哲学的な文脈で論じる。
論文 参考訳(メタデータ) (2024-08-13T03:25:49Z) - Human-like object concept representations emerge naturally in multimodal large language models [24.003766123531545]
大規模言語モデルにおける対象概念の表現が人間とどのように関連しているかを明らかにするために,行動解析と神経画像解析を併用した。
その結果,66次元の埋め込みは非常に安定で予測的であり,人間の心的表現に類似したセマンティッククラスタリングが認められた。
本研究は、機械知能の理解を深め、より人間的な人工知能システムの開発を知らせるものである。
論文 参考訳(メタデータ) (2024-07-01T08:17:19Z) - Can large language models understand uncommon meanings of common words? [30.527834781076546]
大規模言語モデル(LLM)は、様々な自然言語理解(NLU)タスクに大きく進歩している。
しかし、LLMがオウムなのか、本当の意味で世界を理解するのかは、広く認知されている試験機構が欠如している。
本稿では,新しい評価指標を用いたレキシカルセマンティックデータセットの革新的構築について述べる。
論文 参考訳(メタデータ) (2024-05-09T12:58:22Z) - Exploring Concept Depth: How Large Language Models Acquire Knowledge and Concept at Different Layers? [57.04803703952721]
大規模言語モデル(LLM)は、幅広いタスクで顕著なパフォーマンスを示している。
しかし、これらのモデルが様々な複雑さのタスクを符号化するメカニズムは、いまだに理解されていない。
概念深さ」の概念を導入し、より複雑な概念が一般的により深い層で得られることを示唆する。
論文 参考訳(メタデータ) (2024-04-10T14:56:40Z) - Mind's Eye of LLMs: Visualization-of-Thought Elicits Spatial Reasoning in Large Language Models [71.93366651585275]
大規模言語モデル(LLM)は、言語理解と様々な推論タスクにおいて印象的な性能を示した。
本稿では,LLMの空間的推論を視覚的に行うために,VoT(Visual-of-Thought)を提案する。
VoTはLLMの空間的推論能力を著しく向上させる。
論文 参考訳(メタデータ) (2024-04-04T17:45:08Z) - Exploring Perceptual Limitation of Multimodal Large Language Models [57.567868157293994]
我々は、いくつかの最先端MLLMにおける小さな視覚物体の知覚を定量的に研究する。
この制限に寄与できる4つの独立した要因を特定します。
オブジェクトの品質が低く、オブジェクトサイズも小さいため、MLLMの視覚的質問に答える能力は独立して低下する。
論文 参考訳(メタデータ) (2024-02-12T03:04:42Z) - POSQA: Probe the World Models of LLMs with Size Comparisons [38.30479784257936]
身体的言語理解は、言語理解が単に脳の精神的処理の問題ではないことを強調している。
LLM(Large Language Models)の爆発的成長と、私たちの日常生活にすでに広く存在していることから、現実の理解を検証する必要性が高まっている。
論文 参考訳(メタデータ) (2023-10-20T10:05:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。