論文の概要: Mechanisms for Data Sharing in Collaborative Causal Inference (Extended Version)
- arxiv url: http://arxiv.org/abs/2407.11032v1
- Date: Thu, 4 Jul 2024 14:32:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 12:20:02.568178
- Title: Mechanisms for Data Sharing in Collaborative Causal Inference (Extended Version)
- Title(参考訳): 協調因果推論におけるデータ共有のメカニズム(拡張版)
- Authors: Björn Filter, Ralf Möller, Özgür Lütfü Özçep,
- Abstract要約: 本稿では,共通学習課題に対する各当事者のデータ貢献度を評価するための評価手法を提案する。
データの品質に応じてエージェントを公平に報酬するために、あるいはすべてのエージェントのデータコントリビューションを最大化するために利用することができる。
- 参考スコア(独自算出の注目度): 2.709511652792003
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Collaborative causal inference (CCI) is a federated learning method for pooling data from multiple, often self-interested, parties, to achieve a common learning goal over causal structures, e.g. estimation and optimization of treatment variables in a medical setting. Since obtaining data can be costly for the participants and sharing unique data poses the risk of losing competitive advantages, motivating the participation of all parties through equitable rewards and incentives is necessary. This paper devises an evaluation scheme to measure the value of each party's data contribution to the common learning task, tailored to causal inference's statistical demands, by comparing completed partially directed acyclic graphs (CPDAGs) inferred from observational data contributed by the participants. The Data Valuation Scheme thus obtained can then be used to introduce mechanisms that incentivize the agents to contribute data. It can be leveraged to reward agents fairly, according to the quality of their data, or to maximize all agents' data contributions.
- Abstract(参考訳): コラボレーティブ因果推論(Collaborative causal Inference, CCI)は、医療現場における治療変数の推定と最適化など、因果構造に対する共通の学習目標を達成するために、複数の利害関係者からデータをプールするフェデレートされた学習手法である。
参加者がデータを取得し、ユニークなデータを共有することは、競争上の優位性を失うリスクをもたらすため、公平な報酬やインセンティブを通じて、すべての当事者の参加を動機付ける必要がある。
本稿では、参加者が提供した観測データから推定した部分有向非巡回グラフ(CPDAG)を比較し、因果推論の統計的要求に合わせた、共通の学習課題に対する各当事者のデータ貢献の価値を測定するための評価手法を提案する。
得られたData Valuation Schemeは、エージェントにデータ提供のインセンティブを与えるメカニズムを導入するために使用することができる。
データの品質に応じてエージェントを公平に報酬するために、あるいはすべてのエージェントのデータコントリビューションを最大化するために利用することができる。
関連論文リスト
- Federated Prediction-Powered Inference from Decentralized Data [40.84399531998246]
予測パワー推論(PPI)は信頼性が低いにもかかわらず統計的妥当性を確保するために提案されている。
Fed-PPIフレームワークは、プライベートデータ上でローカルモデルをトレーニングし、Federated Learning (FL)を通じてそれらを集約し、PPIを使用して信頼区間を導出する。
論文 参考訳(メタデータ) (2024-09-03T09:14:18Z) - Incentives in Private Collaborative Machine Learning [56.84263918489519]
コラボレーション型機械学習は、複数のパーティのデータに基づいてモデルをトレーニングする。
インセンティブとして差分プライバシー(DP)を導入する。
合成および実世界のデータセットに対するアプローチの有効性と実用性を実証的に実証した。
論文 参考訳(メタデータ) (2024-04-02T06:28:22Z) - Efficient Core-selecting Incentive Mechanism for Data Sharing in
Federated Learning [0.12289361708127873]
フェデレーテッド・ラーニング(Federated Learning)は、参加者のデータを使って改善されたグローバルモデルをトレーニングする分散機械学習システムである。
データを真に入力し、安定した協力を促進するインセンティブメカニズムの確立は、検討すべき重要な問題となっている。
本稿では,サンプリング近似に基づく効率的なコア選択機構を提案する。
論文 参考訳(メタデータ) (2023-09-21T01:47:39Z) - Evaluating and Incentivizing Diverse Data Contributions in Collaborative
Learning [89.21177894013225]
フェデレートされた学習モデルがうまく機能するためには、多様で代表的なデータセットを持つことが不可欠である。
データの多様性を定量化するために用いられる統計的基準と、使用するフェデレート学習アルゴリズムの選択が、結果の平衡に有意な影響を及ぼすことを示す。
我々はこれを活用して、データ収集者がグローバルな人口を代表するデータに貢献することを奨励する、シンプルな最適なフェデレーション学習機構を設計する。
論文 参考訳(メタデータ) (2023-06-08T23:38:25Z) - Mechanisms that Incentivize Data Sharing in Federated Learning [90.74337749137432]
我々は、データ共有の利点が完全に損なわれているような、ナイーブなスキームが破滅的なフリーライディングのレベルにどのように結びつくかを示す。
次に,各エージェントが生成するデータ量を最大化する精度形成機構を導入する。
論文 参考訳(メタデータ) (2022-07-10T22:36:52Z) - Incentivizing Federated Learning [2.420324724613074]
本稿では,顧客に対して可能な限り多くのデータ提供を促すインセンティブメカニズムを提案する。
従来のインセンティブメカニズムとは異なり、私たちのアプローチはデータを収益化しません。
理論的には、ある条件下では、クライアントがフェデレーション学習に参加できる限り多くのデータを使用することを証明します。
論文 参考訳(メタデータ) (2022-05-22T23:02:43Z) - Incentivizing Collaboration in Machine Learning via Synthetic Data
Rewards [26.850070556844628]
本稿では、データ提供に利害関係者間の協調を動機付ける新しい協調生成モデリング(CGM)フレームワークを提案する。
合成データを報酬として分配することは、下流の学習タスクにタスクとモデルに依存しない利点を提供する。
論文 参考訳(メタデータ) (2021-12-17T05:15:30Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
対象タスクが誤用したバイアス情報を除去するために,クロスサンプル対逆脱バイアス法(CSAD)を提案する。
相関測定は, 対向的偏り評価において重要な役割を担い, クロスサンプル型相互情報推定器によって行われる。
我々は,提案手法の最先端手法に対する利点を検証するために,公開データセットの徹底的な実験を行った。
論文 参考訳(メタデータ) (2021-08-11T21:17:02Z) - Data Sharing Markets [95.13209326119153]
我々は、各エージェントがデータの買い手および売り手の両方になり得る設定について検討する。
両データ交換(データ付きトレーディングデータ)と一方データ交換(お金付きトレーディングデータ)の2つの事例を考察する。
論文 参考訳(メタデータ) (2021-07-19T06:00:34Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。