High-Quality and Full Bandwidth Seismic Signal Synthesis using Operational GANs
- URL: http://arxiv.org/abs/2407.11040v1
- Date: Sat, 6 Jul 2024 08:07:23 GMT
- Title: High-Quality and Full Bandwidth Seismic Signal Synthesis using Operational GANs
- Authors: Ozer Can Devecioglu, Serkan Kiranyaz, Zafer Yilmaz, Onur Avci, Moncef Gabbouj, Ertugrul Taciroglu,
- Abstract summary: We propose a novel, high-quality, and full bandwidth seismic signal synthesis by transforming the signal acquired from an inferior sensor.
We employ 1D Operational Generative Adversarial Networks (Op-GANs) with novel loss functions to achieve this.
The proposed method is extensively evaluated over the Simulated Ground Motion (SimGM) benchmark dataset.
- Score: 13.94568670805613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vibration sensors are essential in acquiring seismic activity for an accurate earthquake assessment. The state-of-the-art sensors can provide the best signal quality and the highest bandwidth; however, their high cost usually hinders a wide range of applicability and coverage, which is otherwise possible with their basic and cheap counterparts. But, their poor quality and low bandwidth can significantly degrade the signal fidelity and result in an imprecise analysis. To address these drawbacks, in this study, we propose a novel, high-quality, and full bandwidth seismic signal synthesis by transforming the signal acquired from an inferior sensor. We employ 1D Operational Generative Adversarial Networks (Op-GANs) with novel loss functions to achieve this. Therefore, the study's key contributions include releasing a new dataset, addressing operational constraints in seismic monitoring, and pioneering a deep-learning transformation technique to create the first virtual seismic sensor. The proposed method is extensively evaluated over the Simulated Ground Motion (SimGM) benchmark dataset, and the results demonstrated that the proposed approach significantly improves the quality and bandwidth of seismic signals acquired from a variety of sensors, including a cheap seismic sensor, the CSN-Phidgets, and the integrated accelerometers of an Android, and iOS phone, to the same level as the state-of-the-art sensor (e.g., Kinemetrics-Episensor). The SimGM dataset, our results, and the optimized PyTorch implementation of the proposed approach are publicly shared.
Related papers
- HEROS-GAN: Honed-Energy Regularized and Optimal Supervised GAN for Enhancing Accuracy and Range of Low-Cost Accelerometers [9.98317903374184]
Low-cost accelerometers play a crucial role in modern society due to their advantages of small size, ease of integration, wearability, and mass production.
However, this widely used sensor suffers from severe accuracy and range limitations.
We propose a honed-energy regularized and optimal supervised GAN (HEROS-GAN), which transforms low-cost sensor signals into high-cost equivalents.
arXiv Detail & Related papers (2025-02-25T10:31:01Z) - MSSIDD: A Benchmark for Multi-Sensor Denoising [55.41612200877861]
We introduce a new benchmark, the Multi-Sensor SIDD dataset, which is the first raw-domain dataset designed to evaluate the sensor transferability of denoising models.
We propose a sensor consistency training framework that enables denoising models to learn the sensor-invariant features.
arXiv Detail & Related papers (2024-11-18T13:32:59Z) - Analysis and Optimization of Seismic Monitoring Networks with Bayesian Optimal Experiment Design [0.0]
Bayesian optimal experimental design (OED) seeks to identify data, sensor configurations, or experiments which can optimally reduce uncertainty.
Information theory guides OED by formulating the choice of experiment or sensor placement as an optimization problem.
In this work, we develop the framework necessary to use Bayesian OED to optimize a sensor network's ability to locate seismic events.
arXiv Detail & Related papers (2024-09-27T04:45:27Z) - Graph Neural Networks for Virtual Sensing in Complex Systems: Addressing Heterogeneous Temporal Dynamics [8.715570103753697]
Real-time condition monitoring is crucial for the reliable and efficient operation of complex systems.
We propose a Heterogeneous Temporal Graph Neural Network (HTGNN) framework to address this problem.
HTGNN explicitly models signals from diverse sensors and integrates operating conditions into the model architecture.
arXiv Detail & Related papers (2024-07-26T12:16:53Z) - Quantifying Noise of Dynamic Vision Sensor [49.665407116447454]
Dynamic visual sensors (DVS) are characterised by a large amount of background activity (BA) noise.
It is difficult to distinguish between noise and the cleaned sensor signals using standard image processing techniques.
A new technique is presented to characterise BA noise derived from the Detrended Fluctuation Analysis (DFA)
arXiv Detail & Related papers (2024-04-02T13:43:08Z) - One Masked Model is All You Need for Sensor Fault Detection, Isolation and Accommodation [1.0359008237358598]
We propose a novel framework for sensor fault detection using masked models and self-supervised learning.
We validate our proposed technique on both a public dataset and a real-world dataset from offshore GE wind turbines.
Our proposed technique has the potential to significantly improve the accuracy and reliability of sensor measurements in real-time.
arXiv Detail & Related papers (2024-03-24T13:44:57Z) - Fully Data-Driven Model for Increasing Sampling Rate Frequency of
Seismic Data using Super-Resolution Generative Adversarial Networks [0.0]
This study employs super-resolution generative adversarial networks (SRGANs) to improve the resolution of time-history data.
SRGANs are then utilized to upscale these low-resolution images, thereby enhancing the overall sensor resolution.
The proposed SRGAN method is rigorously evaluated using real seismic data, and its performance is compared with traditional enhancement techniques.
arXiv Detail & Related papers (2024-01-31T20:15:35Z) - Physical-Layer Semantic-Aware Network for Zero-Shot Wireless Sensing [74.12670841657038]
Device-free wireless sensing has recently attracted significant interest due to its potential to support a wide range of immersive human-machine interactive applications.
Data heterogeneity in wireless signals and data privacy regulation of distributed sensing have been considered as the major challenges that hinder the wide applications of wireless sensing in large area networking systems.
We propose a novel zero-shot wireless sensing solution that allows models constructed in one or a limited number of locations to be directly transferred to other locations without any labeled data.
arXiv Detail & Related papers (2023-12-08T13:50:30Z) - Joint Sensing, Communication, and AI: A Trifecta for Resilient THz User
Experiences [118.91584633024907]
A novel joint sensing, communication, and artificial intelligence (AI) framework is proposed so as to optimize extended reality (XR) experiences over terahertz (THz) wireless systems.
arXiv Detail & Related papers (2023-04-29T00:39:50Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Signal Processing and Machine Learning Techniques for Terahertz Sensing:
An Overview [89.09270073549182]
Terahertz (THz) signal generation and radiation methods are shaping the future of wireless systems.
THz-specific signal processing techniques should complement this re-surged interest in THz sensing for efficient utilization of the THz band.
We present an overview of these techniques, with an emphasis on signal pre-processing.
We also address the effectiveness of deep learning techniques by exploring their promising sensing capabilities at the THz band.
arXiv Detail & Related papers (2021-04-09T01:38:34Z) - GEM: Glare or Gloom, I Can Still See You -- End-to-End Multimodal Object
Detector [11.161639542268015]
We propose sensor-aware multi-modal fusion strategies for 2D object detection in harsh-lighting conditions.
Our network learns to estimate the measurement reliability of each sensor modality in the form of scalar weights and masks.
We show that the proposed strategies out-perform the existing state-of-the-art methods on the FLIR-Thermal dataset.
arXiv Detail & Related papers (2021-02-24T14:56:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.