論文の概要: EfQAT: An Efficient Framework for Quantization-Aware Training
- arxiv url: http://arxiv.org/abs/2411.11038v1
- Date: Sun, 17 Nov 2024 11:06:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:28:31.266971
- Title: EfQAT: An Efficient Framework for Quantization-Aware Training
- Title(参考訳): EfQAT: 量子化学習のための効率的なフレームワーク
- Authors: Saleh Ashkboos, Bram Verhoef, Torsten Hoefler, Evangelos Eleftheriou, Martino Dazzi,
- Abstract要約: 量子化対応トレーニング(QAT)スキームは、ほぼ完全な精度を実現することが示されている。
ポストトレーニング量子化(PTQ)スキームはトレーニングを伴わないため、計算的に安価である。
本稿では、量子化モデルのパラメータのサブセットのみを最適化することにより、両方のスキームを一般化するEfQATを提案する。
- 参考スコア(独自算出の注目度): 20.47826378511535
- License:
- Abstract: Quantization-aware training (QAT) schemes have been shown to achieve near-full precision accuracy. They accomplish this by training a quantized model for multiple epochs. This is computationally expensive, mainly because of the full precision backward pass. On the other hand, post-training quantization (PTQ) schemes do not involve training and are therefore computationally cheap, but they usually result in a significant accuracy drop. We address these challenges by proposing EfQAT, which generalizes both schemes by optimizing only a subset of the parameters of a quantized model. EfQAT starts by applying a PTQ scheme to a pre-trained model and only updates the most critical network parameters while freezing the rest, accelerating the backward pass. We demonstrate the effectiveness of EfQAT on various CNNs and Transformer-based models using different GPUs. Specifically, we show that EfQAT is significantly more accurate than PTQ with little extra compute. Furthermore, EfQAT can accelerate the QAT backward pass between 1.44-1.64x while retaining most accuracy.
- Abstract(参考訳): 量子化対応トレーニング(QAT)スキームは、ほぼ完全な精度を実現することが示されている。
それらは、複数のエポックに対して量子化されたモデルをトレーニングすることで、これを達成します。
これは計算コストがかかるが、これは主に完全精度の後方通過のためである。
一方、後学習量子化(PTQ)スキームはトレーニングを伴わないため、計算コストが安いが、通常はかなりの精度低下をもたらす。
量子化モデルのパラメータのサブセットだけを最適化することで、両方のスキームを一般化するEfQATを提案することで、これらの課題に対処する。
EfQATは、事前訓練されたモデルにPTQスキームを適用し、残りの部分を凍結しながら最も重要なネットワークパラメータだけを更新し、後方パスを加速することから始まる。
異なるGPUを用いた各種CNNおよびトランスフォーマーモデルにおけるEfQATの有効性を示す。
具体的には,計算量が少ないPTQよりもEfQATの方がはるかに正確であることを示す。
さらに、EfQATはQATの後方通過を1.44-1.64xまで加速できる。
関連論文リスト
- EfficientQAT: Efficient Quantization-Aware Training for Large Language Models [50.525259103219256]
量子化対応トレーニング(QAT)は、低ビット表現によるメモリ消費を最小限の精度で削減することで、ソリューションを提供する。
より有効なQATアルゴリズムであるEfficient QAT(Efficient Quantization-Aware Training)を提案する。
効率的なQATは、全てのパラメータのブロックワイドトレーニング(Block-AP)と量子化パラメータのエンドツーエンドトレーニング(E2E-QP)の2つのフェーズを含む。
論文 参考訳(メタデータ) (2024-07-10T17:53:30Z) - RAND: Robustness Aware Norm Decay For Quantized Seq2seq Models [14.07649230604283]
モデル精度を向上させるために,量子化意識トレーニング(QAT)プロセスに対する低複雑性な変更を提案する。
精度が向上し、ノイズベースのQATの他の利点を活用できるようになる。
論文 参考訳(メタデータ) (2023-05-24T19:45:56Z) - Optimal Clipping and Magnitude-aware Differentiation for Improved
Quantization-aware Training [8.106641866299377]
現在のプラクティスは、クリッピングしきい値スカラーを設定するためにスカラーに依存しており、最適であることを示すことはできない。
最適クリッピングスカラーを決定するアルゴリズムであるOptimally Clippeds And Vectors (OCTAV)を提案する。
OCTAVは、量子化認識トレーニング(QAT)ルーチンのイテレーション毎に、テンソル毎に、フライ時に最適なクリッピングスカラーを見つける。
論文 参考訳(メタデータ) (2022-06-13T22:15:21Z) - QDrop: Randomly Dropping Quantization for Extremely Low-bit
Post-Training Quantization [54.44028700760694]
ポストトレーニング量子化(PTQ)は、長時間のリトレーニングなしに効率的なニューラルネットワークを生成するために多くの注目を集めている。
本研究では,PTQ再構成にアクティベーション量子化を適切に組み込むことで,最終的な精度が向上することを先駆的に確認する。
結論に基づき、QDROPと呼ばれる単純な効果的なアプローチが提案され、PTQ中のアクティベーションの量子化をランダムに減少させる。
論文 参考訳(メタデータ) (2022-03-11T04:01:53Z) - Towards Efficient Post-training Quantization of Pre-trained Language
Models [85.68317334241287]
PLMのポストトレーニング量子化(PTQ)について検討し,モジュール単位の量子化誤差最小化(MREM)を提案する。
GLUEとSQuADベンチマークの実験により、提案したPTQソリューションはQATに近く動作するだけでなく、トレーニング時間、メモリオーバーヘッド、データ消費を大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-09-30T12:50:06Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
ASRモデルに対する整数のみのゼロショット量子化スキームであるQ-ASRを提案する。
全精度ベースラインモデルと比較すると,wrの変化は無視できる。
Q-ASRは、WER劣化が少ない4倍以上の圧縮率を示します。
論文 参考訳(メタデータ) (2021-03-31T06:05:40Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z) - APQ: Joint Search for Network Architecture, Pruning and Quantization
Policy [49.3037538647714]
本稿では,リソース制約のあるハードウェア上での効率的なディープラーニング推論のためのAPQを提案する。
ニューラルアーキテクチャ、プルーニングポリシー、量子化ポリシーを別々に検索する従来の方法とは異なり、我々はそれらを共同で最適化する。
同じ精度で、APQはMobileNetV2+HAQよりもレイテンシ/エネルギーを2倍/1.3倍削減する。
論文 参考訳(メタデータ) (2020-06-15T16:09:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。