Quality Scalable Quantization Methodology for Deep Learning on Edge
- URL: http://arxiv.org/abs/2407.11260v1
- Date: Mon, 15 Jul 2024 22:00:29 GMT
- Title: Quality Scalable Quantization Methodology for Deep Learning on Edge
- Authors: Salman Abdul Khaliq, Rehan Hafiz,
- Abstract summary: Deep Learning Architectures employ heavy computations and bulk of the computational energy is taken up by the convolution operations in the Convolutional Neural Networks.
The proposed work is to reduce the energy consumption and size of CNN for using machine learning techniques in edge computing on ubiquitous computing devices.
The experiments done on LeNet and ConvNets show an increase upto 6% of zeros and memory savings upto 82.4919% while keeping the accuracy near the state of the art.
- Score: 0.20718016474717196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning Architectures employ heavy computations and bulk of the computational energy is taken up by the convolution operations in the Convolutional Neural Networks. The objective of our proposed work is to reduce the energy consumption and size of CNN for using machine learning techniques in edge computing on ubiquitous computing devices. We propose Systematic Quality Scalable Design Methodology consisting of Quality Scalable Quantization on a higher abstraction level and Quality Scalable Multipliers at lower abstraction level. The first component consists of parameter compression where we approximate representation of values in filters of deep learning models by encoding in 3 bits. A shift and scale based on-chip decoding hardware is proposed which can decode these 3-bit representations to recover approximate filter values. The size of the DNN model is reduced this way and can be sent over a communication channel to be decoded on the edge computing devices. This way power is reduced by limiting data bits by approximation. In the second component we propose a quality scalable multiplier which reduces the number of partial products by converting numbers in canonic sign digit representations and further approximating the number by reducing least significant bits. These quantized CNNs provide almost same ac-curacy as network with original weights with little or no fine-tuning. The hardware for the adaptive multipliers utilize gate clocking for reducing energy consumption during multiplications. The proposed methodology greatly reduces the memory and power requirements of DNN models making it a feasible approach to deploy Deep Learning on edge computing. The experiments done on LeNet and ConvNets show an increase upto 6% of zeros and memory savings upto 82.4919% while keeping the accuracy near the state of the art.
Related papers
- MST-compression: Compressing and Accelerating Binary Neural Networks
with Minimum Spanning Tree [21.15961593182111]
Binary neural networks (BNNs) have been widely adopted to reduce the computational cost and memory storage on edge-computing devices.
However, as neural networks become wider/deeper to improve accuracy and meet practical requirements, the computational burden remains a significant challenge even on the binary version.
This paper proposes a novel method called Minimum Spanning Tree (MST) compression that learns to compress and accelerate BNNs.
arXiv Detail & Related papers (2023-08-26T02:42:12Z) - Deep Convolutional Tables: Deep Learning without Convolutions [12.069186324544347]
We propose a novel formulation of deep networks that do not use dot-product neurons and rely on a hierarchy of voting tables instead.
Deep CT networks have been experimentally shown to have accuracy comparable to that of CNNs of similar architectures.
arXiv Detail & Related papers (2023-04-23T17:49:21Z) - Low-bit Shift Network for End-to-End Spoken Language Understanding [7.851607739211987]
We propose the use of power-of-two quantization, which quantizes continuous parameters into low-bit power-of-two values.
This reduces computational complexity by removing expensive multiplication operations and with the use of low-bit weights.
arXiv Detail & Related papers (2022-07-15T14:34:22Z) - Edge Inference with Fully Differentiable Quantized Mixed Precision
Neural Networks [1.131071436917293]
Quantizing parameters and operations to lower bit-precision offers substantial memory and energy savings for neural network inference.
This paper proposes a new quantization approach for mixed precision convolutional neural networks (CNNs) targeting edge-computing.
arXiv Detail & Related papers (2022-06-15T18:11:37Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Instant Neural Graphics Primitives with a Multiresolution Hash Encoding [67.33850633281803]
We present a versatile new input encoding that permits the use of a smaller network without sacrificing quality.
A small neural network is augmented by a multiresolution hash table of trainable feature vectors whose values are optimized through a gradient descent.
We achieve a combined speed of several orders of magnitude, enabling training of high-quality neural graphics primitives in a matter of seconds.
arXiv Detail & Related papers (2022-01-16T07:22:47Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - a novel attention-based network for fast salient object detection [14.246237737452105]
In the current salient object detection network, the most popular method is using U-shape structure.
We propose a new deep convolution network architecture with three contributions.
Results demonstrate that the proposed method can compress the model to 1/3 of the original size nearly without losing the accuracy.
arXiv Detail & Related papers (2021-12-20T12:30:20Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
We propose a novel encoding scheme using -1, +1 to decompose quantized neural networks (QNNs) into multi-branch binary networks.
We validate the effectiveness of our method on large-scale image classification, object detection, and semantic segmentation tasks.
arXiv Detail & Related papers (2021-06-18T03:11:15Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Direct Quantization for Training Highly Accurate Low Bit-width Deep
Neural Networks [73.29587731448345]
This paper proposes two novel techniques to train deep convolutional neural networks with low bit-width weights and activations.
First, to obtain low bit-width weights, most existing methods obtain the quantized weights by performing quantization on the full-precision network weights.
Second, to obtain low bit-width activations, existing works consider all channels equally.
arXiv Detail & Related papers (2020-12-26T15:21:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.