Deep Convolutional Tables: Deep Learning without Convolutions
- URL: http://arxiv.org/abs/2304.11706v1
- Date: Sun, 23 Apr 2023 17:49:21 GMT
- Title: Deep Convolutional Tables: Deep Learning without Convolutions
- Authors: Shay Dekel, Yosi Keller, Aharon Bar-Hillel
- Abstract summary: We propose a novel formulation of deep networks that do not use dot-product neurons and rely on a hierarchy of voting tables instead.
Deep CT networks have been experimentally shown to have accuracy comparable to that of CNNs of similar architectures.
- Score: 12.069186324544347
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel formulation of deep networks that do not use dot-product
neurons and rely on a hierarchy of voting tables instead, denoted as
Convolutional Tables (CT), to enable accelerated CPU-based inference.
Convolutional layers are the most time-consuming bottleneck in contemporary
deep learning techniques, severely limiting their use in Internet of Things and
CPU-based devices. The proposed CT performs a fern operation at each image
location: it encodes the location environment into a binary index and uses the
index to retrieve the desired local output from a table. The results of
multiple tables are combined to derive the final output. The computational
complexity of a CT transformation is independent of the patch (filter) size and
grows gracefully with the number of channels, outperforming comparable
convolutional layers. It is shown to have a better capacity:compute ratio than
dot-product neurons, and that deep CT networks exhibit a universal
approximation property similar to neural networks. As the transformation
involves computing discrete indices, we derive a soft relaxation and
gradient-based approach for training the CT hierarchy. Deep CT networks have
been experimentally shown to have accuracy comparable to that of CNNs of
similar architectures. In the low compute regime, they enable an error:speed
trade-off superior to alternative efficient CNN architectures.
Related papers
- Quality Scalable Quantization Methodology for Deep Learning on Edge [0.20718016474717196]
Deep Learning Architectures employ heavy computations and bulk of the computational energy is taken up by the convolution operations in the Convolutional Neural Networks.
The proposed work is to reduce the energy consumption and size of CNN for using machine learning techniques in edge computing on ubiquitous computing devices.
The experiments done on LeNet and ConvNets show an increase upto 6% of zeros and memory savings upto 82.4919% while keeping the accuracy near the state of the art.
arXiv Detail & Related papers (2024-07-15T22:00:29Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - A Domain Decomposition-Based CNN-DNN Architecture for Model Parallel Training Applied to Image Recognition Problems [0.0]
A novel CNN-DNN architecture is proposed that naturally supports a model parallel training strategy.
The proposed approach can significantly accelerate the required training time compared to the global model.
Results show that the proposed approach can also help to improve the accuracy of the underlying classification problem.
arXiv Detail & Related papers (2023-02-13T18:06:59Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - Low-Energy Convolutional Neural Networks (CNNs) using Hadamard Method [0.0]
Convolutional neural networks (CNNs) are a potential approach for object recognition and detection.
A new approach based on the Hadamard transformation as an alternative to the convolution operation is demonstrated.
The method is helpful for other computer vision tasks when the kernel size is smaller than the input image size.
arXiv Detail & Related papers (2022-09-06T21:36:57Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - CoTr: Efficiently Bridging CNN and Transformer for 3D Medical Image
Segmentation [95.51455777713092]
Convolutional neural networks (CNNs) have been the de facto standard for nowadays 3D medical image segmentation.
We propose a novel framework that efficiently bridges a bf Convolutional neural network and a bf Transformer bf (CoTr) for accurate 3D medical image segmentation.
arXiv Detail & Related papers (2021-03-04T13:34:22Z) - An Alternative Practice of Tropical Convolution to Traditional
Convolutional Neural Networks [0.5837881923712392]
We propose a new type of CNNs called Tropical Convolutional Neural Networks (TCNNs)
TCNNs are built on tropical convolutions in which the multiplications and additions in conventional convolutional layers are replaced by additions and min/max operations respectively.
We show that TCNN can achieve higher expressive power than ordinary convolutional layers on the MNIST and CIFAR10 image data set.
arXiv Detail & Related papers (2021-03-03T00:13:30Z) - Computational optimization of convolutional neural networks using
separated filters architecture [69.73393478582027]
We consider a convolutional neural network transformation that reduces computation complexity and thus speedups neural network processing.
Use of convolutional neural networks (CNN) is the standard approach to image recognition despite the fact they can be too computationally demanding.
arXiv Detail & Related papers (2020-02-18T17:42:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.