Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models
- URL: http://arxiv.org/abs/2407.11282v3
- Date: Fri, 19 Jul 2024 14:16:35 GMT
- Title: Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models
- Authors: Qingcheng Zeng, Mingyu Jin, Qinkai Yu, Zhenting Wang, Wenyue Hua, Zihao Zhou, Guangyan Sun, Yanda Meng, Shiqing Ma, Qifan Wang, Felix Juefei-Xu, Kaize Ding, Fan Yang, Ruixiang Tang, Yongfeng Zhang,
- Abstract summary: Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial.
Our research investigates the fragility of uncertainty estimation and explores potential attacks.
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
- Score: 79.76293901420146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial. One commonly used method to assess the reliability of LLMs' responses is uncertainty estimation, which gauges the likelihood of their answers being correct. While many studies focus on improving the accuracy of uncertainty estimations for LLMs, our research investigates the fragility of uncertainty estimation and explores potential attacks. We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output. Specifically, the proposed backdoor attack method can alter an LLM's output probability distribution, causing the probability distribution to converge towards an attacker-predefined distribution while ensuring that the top-1 prediction remains unchanged. Our experimental results demonstrate that this attack effectively undermines the model's self-evaluation reliability in multiple-choice questions. For instance, we achieved a 100 attack success rate (ASR) across three different triggering strategies in four models. Further, we investigate whether this manipulation generalizes across different prompts and domains. This work highlights a significant threat to the reliability of LLMs and underscores the need for future defenses against such attacks. The code is available at https://github.com/qcznlp/uncertainty_attack.
Related papers
- Evaluating language models as risk scores [23.779329697527054]
We introduce folktexts, a software package to generate risk scores using question-answering LLMs.
We evaluate 17 recent LLMs across five proposed benchmark tasks.
We find that zero-shot risk scores produced by multiple-choice question-answering have high predictive signal but are widely miscalibrated.
arXiv Detail & Related papers (2024-07-19T18:13:37Z) - Jailbreaking as a Reward Misspecification Problem [80.52431374743998]
We propose a novel perspective that attributes this vulnerability to reward misspecification during the alignment process.
We introduce a metric ReGap to quantify the extent of reward misspecification and demonstrate its effectiveness.
We present ReMiss, a system for automated red teaming that generates adversarial prompts in a reward-misspecified space.
arXiv Detail & Related papers (2024-06-20T15:12:27Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners [10.746821861109176]
Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic tasks.
However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile.
In this work, we introduce a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector.
arXiv Detail & Related papers (2024-06-01T12:52:06Z) - Decomposing Uncertainty for Large Language Models through Input Clarification Ensembling [69.83976050879318]
In large language models (LLMs), identifying sources of uncertainty is an important step toward improving reliability, trustworthiness, and interpretability.
In this paper, we introduce an uncertainty decomposition framework for LLMs, called input clarification ensembling.
Our approach generates a set of clarifications for the input, feeds them into an LLM, and ensembles the corresponding predictions.
arXiv Detail & Related papers (2023-11-15T05:58:35Z) - Embers of Autoregression: Understanding Large Language Models Through
the Problem They are Trained to Solve [21.55766758950951]
We make predictions about the strategies that large language models will adopt to solve next-word prediction tasks.
We evaluate two LLMs on eleven tasks and find robust evidence that LLMs are influenced by probability.
We conclude that we should not evaluate LLMs as if they are humans but should instead treat them as a distinct type of system.
arXiv Detail & Related papers (2023-09-24T13:35:28Z) - Can LLMs Express Their Uncertainty? An Empirical Evaluation of Confidence Elicitation in LLMs [60.61002524947733]
Previous confidence elicitation methods rely on white-box access to internal model information or model fine-tuning.
This leads to a growing need to explore the untapped area of black-box approaches for uncertainty estimation.
We define a systematic framework with three components: prompting strategies for eliciting verbalized confidence, sampling methods for generating multiple responses, and aggregation techniques for computing consistency.
arXiv Detail & Related papers (2023-06-22T17:31:44Z) - Generating with Confidence: Uncertainty Quantification for Black-box Large Language Models [37.63939774027709]
Large language models (LLMs) specializing in natural language generation (NLG) have recently started exhibiting promising capabilities.
We propose and compare several confidence/uncertainty measures, applying them to *selective NLG* where unreliable results could either be ignored or yielded for further assessment.
Results reveal that a simple measure for the semantic dispersion can be a reliable predictor of the quality of LLM responses.
arXiv Detail & Related papers (2023-05-30T16:31:26Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
We study how hardening benign clients can affect the global model (and the malicious clients)
We propose a trigger reverse engineering based defense and show that our method can achieve improvement with guarantee robustness.
Our results on eight competing SOTA defense methods show the empirical superiority of our method on both single-shot and continuous FL backdoor attacks.
arXiv Detail & Related papers (2022-10-23T22:24:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.