CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion-Blurred Images
- URL: http://arxiv.org/abs/2407.03923v2
- Date: Sun, 08 Dec 2024 08:05:26 GMT
- Title: CRiM-GS: Continuous Rigid Motion-Aware Gaussian Splatting from Motion-Blurred Images
- Authors: Jungho Lee, Donghyeong Kim, Dogyoon Lee, Suhwan Cho, Minhyeok Lee, Sangyoun Lee,
- Abstract summary: CRiM-GS is a textbfContinuous textbfRigid textbfMotion-aware textbfGaussian textbfSplatting.
It reconstructs precise 3D scenes from motion-blurred images while maintaining real-time rendering speed.
- Score: 14.738528284246545
- License:
- Abstract: 3D Gaussian Splatting (3DGS) has gained significant attention for their high-quality novel view rendering, motivating research to address real-world challenges. A critical issue is the camera motion blur caused by movement during exposure, which hinders accurate 3D scene reconstruction. In this study, we propose CRiM-GS, a \textbf{C}ontinuous \textbf{Ri}gid \textbf{M}otion-aware \textbf{G}aussian \textbf{S}platting that reconstructs precise 3D scenes from motion-blurred images while maintaining real-time rendering speed. Considering the complex motion patterns inherent in real-world camera movements, we predict continuous camera trajectories using neural ordinary differential equations (ODE). To ensure accurate modeling, we employ rigid body transformations with proper regularization, preserving object shape and size. Additionally, we introduce an adaptive distortion-aware transformation to compensate for potential nonlinear distortions, such as rolling shutter effects, and unpredictable camera movements. By revisiting fundamental camera theory and leveraging advanced neural training techniques, we achieve precise modeling of continuous camera trajectories. Extensive experiments demonstrate state-of-the-art performance both quantitatively and qualitatively on benchmark datasets.
Related papers
- LiftImage3D: Lifting Any Single Image to 3D Gaussians with Video Generation Priors [107.83398512719981]
Single-image 3D reconstruction remains a fundamental challenge in computer vision.
Recent advances in Latent Video Diffusion Models offer promising 3D priors learned from large-scale video data.
We propose LiftImage3D, a framework that effectively releases LVDMs' generative priors while ensuring 3D consistency.
arXiv Detail & Related papers (2024-12-12T18:58:42Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images [36.91327728871551]
3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis.
We introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images.
arXiv Detail & Related papers (2024-05-29T04:59:27Z) - DeblurGS: Gaussian Splatting for Camera Motion Blur [45.13521168573883]
We propose DeblurGS, a method to optimize sharp 3D Gaussian Splatting from motion-blurred images.
We restore a fine-grained sharp scene by leveraging the remarkable reconstruction capability of 3D Gaussian Splatting.
Our approach estimates the 6-Degree-of-Freedom camera motion for each blurry observation and synthesizes corresponding blurry renderings.
arXiv Detail & Related papers (2024-04-17T13:14:52Z) - Gaussian Splatting on the Move: Blur and Rolling Shutter Compensation for Natural Camera Motion [25.54868552979793]
We present a method that adapts to camera motion and allows high-quality scene reconstruction with handheld video data.
Our results with both synthetic and real data demonstrate superior performance in mitigating camera motion over existing methods.
arXiv Detail & Related papers (2024-03-20T06:19:41Z) - BAD-Gaussians: Bundle Adjusted Deblur Gaussian Splatting [8.380954205255104]
BAD-Gaussians is a novel approach to handle severe motion-blurred images with inaccurate camera poses.
Our method achieves superior rendering quality compared to previous state-of-the-art deblur neural rendering methods.
arXiv Detail & Related papers (2024-03-18T14:43:04Z) - Motion-aware 3D Gaussian Splatting for Efficient Dynamic Scene Reconstruction [89.53963284958037]
We propose a novel motion-aware enhancement framework for dynamic scene reconstruction.
Specifically, we first establish a correspondence between 3D Gaussian movements and pixel-level flow.
For the prevalent deformation-based paradigm that presents a harder optimization problem, a transient-aware deformation auxiliary module is proposed.
arXiv Detail & Related papers (2024-03-18T03:46:26Z) - SceNeRFlow: Time-Consistent Reconstruction of General Dynamic Scenes [75.9110646062442]
We propose SceNeRFlow to reconstruct a general, non-rigid scene in a time-consistent manner.
Our method takes multi-view RGB videos and background images from static cameras with known camera parameters as input.
We show experimentally that, unlike prior work that only handles small motion, our method enables the reconstruction of studio-scale motions.
arXiv Detail & Related papers (2023-08-16T09:50:35Z) - Spatiotemporal Bundle Adjustment for Dynamic 3D Human Reconstruction in
the Wild [49.672487902268706]
We present a framework that jointly estimates camera temporal alignment and 3D point triangulation.
We reconstruct 3D motion trajectories of human bodies in events captured by multiple unsynchronized and unsynchronized video cameras.
arXiv Detail & Related papers (2020-07-24T23:50:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.