論文の概要: BUSClean: Open-source software for breast ultrasound image pre-processing and knowledge extraction for medical AI
- arxiv url: http://arxiv.org/abs/2407.11316v1
- Date: Tue, 16 Jul 2024 02:02:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:52:01.238736
- Title: BUSClean: Open-source software for breast ultrasound image pre-processing and knowledge extraction for medical AI
- Title(参考訳): BUSClean:医療用AIのための乳房超音波画像前処理と知識抽出のためのオープンソースソフトウェア
- Authors: Arianna Bunnell, Kailee Hung, John A. Shepherd, Peter Sadowski,
- Abstract要約: 臨床乳房超音波データセットを自動処理するオープンソースソフトウェアソリューションを提案する。
このアルゴリズムは、ソノグラフアノテーションからBUSスキャンフィルタリング、クリーニング、知識抽出を行う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Development of artificial intelligence (AI) for medical imaging demands curation and cleaning of large-scale clinical datasets comprising hundreds of thousands of images. Some modalities, such as mammography, contain highly standardized imaging. In contrast, breast ultrasound imaging (BUS) can contain many irregularities not indicated by scan metadata, such as enhanced scan modes, sonographer annotations, or additional views. We present an open-source software solution for automatically processing clinical BUS datasets. The algorithm performs BUS scan filtering, cleaning, and knowledge extraction from sonographer annotations. Its modular design enables users to adapt it to new settings. Experiments on an internal testing dataset of 430 clinical BUS images achieve >95% sensitivity and >98% specificity in detecting every type of text annotation, >98% sensitivity and specificity in detecting scans with blood flow highlighting, alternative scan modes, or invalid scans. A case study on a completely external, public dataset of BUS scans found that BUSClean identified text annotations and scans with blood flow highlighting with 88.6% and 90.9% sensitivity and 98.3% and 99.9% specificity, respectively. Adaptation of the lesion caliper detection method to account for a type of caliper specific to the case study demonstrates intended use of BUSClean in new data distributions and improved performance in lesion caliper detection from 43.3% and 93.3% out-of-the-box to 92.1% and 92.3% sensitivity and specificity, respectively. Source code, example notebooks, and sample data are available at https://github.com/hawaii-ai/bus-cleaning.
- Abstract(参考訳): 医療画像のための人工知能(AI)の開発は、数十万の画像からなる大規模な臨床データセットのキュレーションとクリーニングを要求する。
マンモグラフィーのようないくつかのモダリティは、高度に標準化されたイメージングを含んでいる。
対照的に、乳房超音波画像(BUS)は、スキャンモード、ソノグラフアノテーション、追加のビューなど、スキャンメタデータによって示されない多くの不規則性を含むことができる。
臨床BUSデータセットを自動処理するオープンソースソフトウェアソリューションを提案する。
このアルゴリズムは、ソノグラフアノテーションからBUSスキャンフィルタリング、クリーニング、知識抽出を行う。
モジュラーデザインにより、ユーザーは新しい設定に適応できる。
430の臨床的BUS画像の内部試験データセットの実験は、あらゆる種類のテキストアノテーションの検出において、95%の感度と98%の特異性、98%の感度と特異性、血液フローハイライト、代替スキャンモード、または無効スキャンによるスキャンの検出において達成される。
A case study on a completely external, public dataset of BUS scans found that BUSClean identified text annotations and scan with blood flow highlighting with 88.6% and 90.9% sensitivity and 98.3% and 99.9% specificity。
ケーススタディに特有のキャリパーの種類を考慮に入れた病変キャリパー検出法の適応は、新しいデータ分布におけるBUSCleanの使用を意図し、病変キャリパー検出の性能を43.3%、93.3%のアウト・オブ・ザ・ボックスから92.1%、92.3%の感度と特異性に向上させる。
ソースコード、サンプルノート、サンプルデータはhttps://github.com/hawaii-ai/bus-cleaning.comで公開されている。
関連論文リスト
- Breast Ultrasound Report Generation using LangChain [58.07183284468881]
本稿では,Large Language Models (LLM) を用いたLangChainによる複数の画像解析ツールを胸部報告プロセスに統合することを提案する。
本手法は,超音波画像から関連する特徴を正確に抽出し,臨床的文脈で解釈し,包括的で標準化された報告を生成する。
論文 参考訳(メタデータ) (2023-12-05T00:28:26Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - OCTOPUS -- optical coherence tomography plaque and stent analysis
software [0.0]
血管内光コヒーレンストモグラフィ(IV OCT)は,経皮的冠動脈インターベンションの導出に有用である。
我々は,光コヒーレンストモグラフィPlaqUeとStent(OCTOPUS)解析ソフトウェアを開発した。
ソフトウェアには、前処理、ディープラーニングプラークセグメンテーション、ステントストラットの機械学習識別、プルバックの登録など、いくつかの重要なアルゴリズムステップが含まれている。
論文 参考訳(メタデータ) (2022-04-21T15:49:03Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
本稿では,病理組織像間でテクスチャを特徴付ける手法を提案する。
2つのHIデータセットに有望な精度で、そのような画像の固有特性を定量化することが可能である。
論文 参考訳(メタデータ) (2022-02-27T02:19:09Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Spectral Machine Learning for Pancreatic Mass Imaging Classification [2.841795278340179]
ct画像を用いた膵腫瘤スクリーニングにはspectrum machine learning法が用いられる。
サンプル外診断分類では試験精度94.6%を達成した。
論文 参考訳(メタデータ) (2021-05-03T10:17:32Z) - Ensemble Transfer Learning of Elastography and B-mode Breast Ultrasound
Images [3.3615086420912745]
良性および悪性乳癌を分類するためのアンサンブル移動学習モデルを提案する。
このモデルは、AlexNetとResNetモデルのセマンティック機能を組み合わせ、悪性腫瘍から良性を分類します。
実験結果から, このアンサンブルモデルでは感度88.89%, 特異性91.10%が得られた。
論文 参考訳(メタデータ) (2021-02-17T04:23:30Z) - Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D
Detection Network [18.31577982955252]
良性腫瘍145例,悪性腫瘍273例の418例を対象に,本ネットワークの有効性を検証した。
実験により, ネットワークの感度は97.66%, 1.23偽陽性 (FPs) であり, 曲線(AUC) 値0.8720以下の領域を有することがわかった。
論文 参考訳(メタデータ) (2020-07-31T15:25:07Z) - Reliable Tuberculosis Detection using Chest X-ray with Deep Learning,
Segmentation and Visualization [0.0]
結核は細菌感染による慢性肺疾患であり、死因のトップ10の1つである。
胸部X線画像から, 画像前処理, データ拡張, 画像分割, ディープラーニング分類技術を用いて, TBを確実に検出した。
論文 参考訳(メタデータ) (2020-07-29T15:11:34Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
この研究は、機械学習アルゴリズムに胸部X線入力のための一般的な前処理ステップを導入する。
VGG11エンコーダをベースとした改良Y-Netアーキテクチャを用いて,ラジオグラフィの幾何学的配向とセグメンテーションを同時に学習する。
対照画像の27.0%,34.9%に対し,95.8%,96.2%のアノテーションマスクが認められた。
論文 参考訳(メタデータ) (2020-05-08T02:16:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。