論文の概要: Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D
Detection Network
- arxiv url: http://arxiv.org/abs/2007.16133v1
- Date: Fri, 31 Jul 2020 15:25:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 06:30:52.604178
- Title: Computer-aided Tumor Diagnosis in Automated Breast Ultrasound using 3D
Detection Network
- Title(参考訳): 3D検出ネットワークを用いた乳房超音波自動診断
- Authors: Junxiong Yu, Chaoyu Chen, Xin Yang, Yi Wang, Dan Yan, Jianxing Zhang,
Dong Ni
- Abstract要約: 良性腫瘍145例,悪性腫瘍273例の418例を対象に,本ネットワークの有効性を検証した。
実験により, ネットワークの感度は97.66%, 1.23偽陽性 (FPs) であり, 曲線(AUC) 値0.8720以下の領域を有することがわかった。
- 参考スコア(独自算出の注目度): 18.31577982955252
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated breast ultrasound (ABUS) is a new and promising imaging modality
for breast cancer detection and diagnosis, which could provide intuitive 3D
information and coronal plane information with great diagnostic value. However,
manually screening and diagnosing tumors from ABUS images is very
time-consuming and overlooks of abnormalities may happen. In this study, we
propose a novel two-stage 3D detection network for locating suspected lesion
areas and further classifying lesions as benign or malignant tumors.
Specifically, we propose a 3D detection network rather than frequently-used
segmentation network to locate lesions in ABUS images, thus our network can
make full use of the spatial context information in ABUS images. A novel
similarity loss is designed to effectively distinguish lesions from background.
Then a classification network is employed to identify the located lesions as
benign or malignant. An IoU-balanced classification loss is adopted to improve
the correlation between classification and localization task. The efficacy of
our network is verified from a collected dataset of 418 patients with 145
benign tumors and 273 malignant tumors. Experiments show our network attains a
sensitivity of 97.66% with 1.23 false positives (FPs), and has an area under
the curve(AUC) value of 0.8720.
- Abstract(参考訳): 自動乳房超音波(ABUS)は、乳がんの診断と診断のための新しい将来性のある画像モダリティであり、直感的な3D情報と診断価値の高い冠動脈平面情報を提供することができる。
しかし、ABUS画像から腫瘍を手動でスクリーニング・診断することは非常に時間がかかり、異常の見落としが生じる可能性がある。
そこで本研究では, 病変部位を同定し, 良性腫瘍, 悪性腫瘍と分類するための新しい2段階3D検出ネットワークを提案する。
具体的には,abus画像中の病変を同定するために,頻繁に使用されるセグメンテーションネットワークではなく,3次元検出ネットワークを提案する。
新しい類似性損失は、病変と背景を効果的に区別するように設計されている。
次に、検出された病変を良性または悪性と識別する分類ネットワークを用いる。
分類タスクと局所化タスクの相関を改善するために,IoUバランスの取れた分類損失を採用する。
良性腫瘍145例,悪性腫瘍273例の418例を対象に,本ネットワークの有効性を検証した。
実験により, ネットワークの感度は97.66%, 1.23偽陽性 (FPs) であり, 曲線(AUC) 値0.8720以下の領域を有することがわかった。
関連論文リスト
- Spatial-aware Attention Generative Adversarial Network for Semi-supervised Anomaly Detection in Medical Image [63.59114880750643]
本稿では,一級半教師付き健康画像生成のための空間意識生成ネットワーク(SAGAN)について紹介する。
SAGANは、正常な画像の復元と擬似異常画像の復元によって導かれる、ラベルのないデータに対応する高品質な健康画像を生成する。
3つの医学データセットに対する大規模な実験は、提案されたSAGANが最先端の手法よりも優れていることを示した。
論文 参考訳(メタデータ) (2024-05-21T15:41:34Z) - Liver Tumor Screening and Diagnosis in CT with Pixel-Lesion-Patient
Network [37.931408083443074]
Pixel-Lesion-pAtient Network (PLAN) は, アンカークエリの改善と前景のサンプリング損失による各病変の分割と分類を行う。
PLANは95%と96%の患者レベルの感度と特異性を達成している。
造影CTでは, 病変レベルの検出精度, リコール, 分類精度は92%, 89%, 86%であり, CNNやトランスフォーマーよりも優れていた。
論文 参考訳(メタデータ) (2023-07-17T06:21:45Z) - Using Spatio-Temporal Dual-Stream Network with Self-Supervised Learning
for Lung Tumor Classification on Radial Probe Endobronchial Ultrasound Video [0.0]
肺がんの生検の過程で、医師はリアルタイム超音波画像を使用して、サンプリングに適した病変を見つける。
これまでの研究では良性肺病変と悪性肺病変を効果的に区別するために2D畳み込みニューラルネットワークを用いてきた。
本研究では,3次元ニューラルネットワークに基づく自動診断システムを設計する。
論文 参考訳(メタデータ) (2023-05-04T10:39:37Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Explainable multiple abnormality classification of chest CT volumes with
AxialNet and HiResCAM [89.2175350956813]
本稿では,容積医用画像における多変量分類の課題について紹介する。
本稿では,複数のインスタンス学習型畳み込みニューラルネットワークであるAxialNetを提案する。
そして、HiResCAMと3D許容領域を利用した新しいマスクロスにより、モデルの学習を改善することを目指す。
論文 参考訳(メタデータ) (2021-11-24T01:14:33Z) - Universal Lesion Detection in CT Scans using Neural Network Ensembles [5.341593824515018]
腫瘍の拡がりの下流評価を促進するため、病変の縮小の前提条件は、その検出である。
我々は,NIH DeepLesionデータセットに存在する疑わしい病変を識別するために,最先端検出ニューラルネットワークを提案する。
画像あたり65.17%の精度と91.67%の感度で1枚あたり4FPの精度で、病変を局在させる最良の検出モデルのアンサンブルを構築した。
論文 参考訳(メタデータ) (2021-11-09T00:11:01Z) - 3D RegNet: Deep Learning Model for COVID-19 Diagnosis on Chest CT Image [9.407002591446286]
新型コロナウイルス感染症(Covid-19)患者の身体状態を診断するための3D-RegNetベースのニューラルネットワークを提案する。
その結果、3Dモデルの試験セット,f1スコア0.8379,AUC値0.8807が達成された。
論文 参考訳(メタデータ) (2021-07-08T18:10:07Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - Esophageal Tumor Segmentation in CT Images using Dilated Dense Attention
Unet (DDAUnet) [3.0929226049096217]
畳み込みニューラルネットワーク(CNN)を用いた食道癌全自動切除法を提案する。
提案するネットワークはDilated Dense Attention Unet (DDAUnet) と呼ばれ、各密ブロックにおける空間的およびチャネル的注意力を活用して、決定的特徴写像と領域に選択的に集中する。
論文 参考訳(メタデータ) (2020-12-06T11:42:52Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
本稿では,1)TruncatedRPNが正負値と負値のバランスをとること,2)Auto-lesion Blockが自動的に医療画像にカスタマイズされ,地域提案間の関係認識操作が組み込まれること,3)Relation Transferモジュールが意味的関係を組み込むこと,の3つのコンポーネントを含む新しいElixirNetを紹介した。
DeepLesionとKits19の実験では、ElixirNetの有効性が証明され、パラメータが少なくてFPNよりも感度と精度が向上した。
論文 参考訳(メタデータ) (2020-03-03T05:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。