DMRG study of the theta-dependent mass spectrum in the 2-flavor Schwinger model
- URL: http://arxiv.org/abs/2407.11391v1
- Date: Tue, 16 Jul 2024 05:23:20 GMT
- Title: DMRG study of the theta-dependent mass spectrum in the 2-flavor Schwinger model
- Authors: Etsuko Itou, Akira Matsumoto, Yuya Tanizaki,
- Abstract summary: We study the $theta$-dependent mass spectrum of the massive $2$-flavor Schwinger model in the Hamiltonian formalism.
The masses of the composite particles, the pion and sigma meson, are computed by two independent methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the $\theta$-dependent mass spectrum of the massive $2$-flavor Schwinger model in the Hamiltonian formalism using the density-matrix renormalization group(DMRG). The masses of the composite particles, the pion and sigma meson, are computed by two independent methods. One is the improved one-point-function scheme, where we measure the local meson operator coupled to the boundary state and extract the mass from its exponential decay. Since the $\theta$ term causes a nontrivial operator mixing, we unravel it by diagonalizing the correlation matrix to define the meson operator. The other is the dispersion-relation scheme, a heuristic approach specific to Hamiltonian formalism. We obtain the dispersion relation directly by measuring the energy and momentum of the excited states. The sign problem is circumvented in these methods, and their results agree with each other even for large $\theta$. We reveal that the $\theta$-dependence of the pion mass at $m/g=0.1$ is consistent with the prediction by the bosonized model. We also find that the mass of the sigma meson satisfies the semi-classical formula, $M_{\sigma}/M_{\pi}=\sqrt{3}$, for almost all region of $\theta$. While the sigma meson is a stable particle thanks to this relation, the eta meson is no longer protected by the $G$-parity and becomes unstable for $\theta\neq 0$.
Related papers
- Dimension-free Private Mean Estimation for Anisotropic Distributions [55.86374912608193]
Previous private estimators on distributions over $mathRd suffer from a curse of dimensionality.
We present an algorithm whose sample complexity has improved dependence on dimension.
arXiv Detail & Related papers (2024-11-01T17:59:53Z) - Discrete-coordinate crypto-Hermitian quantum system controlled by
time-dependent Robin boundary conditions [0.0]
unitary quantum mechanics formulated in non-Hermitian (or, more precisely, in hiddenly Hermitian) interaction-picture representation is illustrated via an elementary $N$ by $N$ matrix Hamiltonian $H(t)$ mimicking a 1D-box system with physics controlled by time-dependent boundary conditions.
Our key message is that contrary to the conventional beliefs and in spite of the unitarity of the evolution of the system, neither its "Heisenbergian Hamiltonian" $Sigma(t)$ nor its "Schr"odingerian Hamiltonian" $G(
arXiv Detail & Related papers (2024-01-19T13:28:42Z) - Quantum tomography of helicity states for general scattering processes [55.2480439325792]
Quantum tomography has become an indispensable tool in order to compute the density matrix $rho$ of quantum systems in Physics.
We present the theoretical framework for reconstructing the helicity quantum initial state of a general scattering process.
arXiv Detail & Related papers (2023-10-16T21:23:42Z) - Calculating composite-particle spectra in Hamiltonian formalism and
demonstration in 2-flavor QED$_{1+1\text{d}}$ [0.0]
We consider three distinct methods to compute the mass spectrum of gauge theories in the Hamiltonian formalism.
We find that the mass of $sigma$ meson is lighter than twice the pion mass, and thus $sigma$ is stable against the decay process.
Our numerical results are so close to the WKB-based formula between the pion and sigma-meson masses, $M_sigma/M_pi=sqrt3$.
arXiv Detail & Related papers (2023-07-31T13:38:23Z) - Phase Diagram of the Two-Flavor Schwinger Model at Zero Temperature [0.0]
We find interesting effects at $theta=pi$: along the $SU(2)$-invariant line $m_lat = m- g2 a/4$.
In this regime there is a non-perturbatively small mass gap $sim e- A g2/m2$.
arXiv Detail & Related papers (2023-05-08T03:17:48Z) - Non-Hermiticity induces localization: good and bad resonances in
power-law random banded matrices [0.0]
We study the fate of the power-law random banded matrix (PLRBM) to non-Hermiticity.
The value of the critical $alpha$ depends on the strength of the on-site potential.
This result provides an example of non-Hermiticity-induced localization.
arXiv Detail & Related papers (2023-01-31T19:00:01Z) - On parametric resonance in the laser action [91.3755431537592]
We consider the selfconsistent semiclassical Maxwell--Schr"odinger system for the solid state laser.
We introduce the corresponding Poincar'e map $P$ and consider the differential $DP(Y0)$ at suitable stationary state $Y0$.
arXiv Detail & Related papers (2022-08-22T09:43:57Z) - Discrete Chiral Symmetry and Mass Shift in Lattice Hamiltonian Approach
to Schwinger Model [0.0]
We revisit the lattice formulation of the Schwinger model using the Kogut-Susskind Hamiltonian approach with staggered fermions.
We find that including the shift of the $theta$-angle by $pi$ greatly improves the rate of convergence to the continuum limit.
arXiv Detail & Related papers (2022-06-10T18:09:27Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Mapping the charge-dyon system into the position-dependent effective
mass background via Pauli equation [77.34726150561087]
This work aims to reproduce a quantum system composed of a charged spin - $1/2$ fermion interacting with a dyon with an opposite electrical charge.
arXiv Detail & Related papers (2020-11-01T14:38:34Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.