EndoFinder: Online Image Retrieval for Explainable Colorectal Polyp Diagnosis
- URL: http://arxiv.org/abs/2407.11401v1
- Date: Tue, 16 Jul 2024 05:40:17 GMT
- Title: EndoFinder: Online Image Retrieval for Explainable Colorectal Polyp Diagnosis
- Authors: Ruijie Yang, Yan Zhu, Peiyao Fu, Yizhe Zhang, Zhihua Wang, Quanlin Li, Pinghong Zhou, Xian Yang, Shuo Wang,
- Abstract summary: EndoFinder is a content-based image retrieval framework.
It finds the 'digital twin' polyp in the reference database given a newly detected polyp.
The clinical semantics of the new polyp can be inferred referring to the matched ones.
- Score: 10.83700068295662
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Determining the necessity of resecting malignant polyps during colonoscopy screen is crucial for patient outcomes, yet challenging due to the time-consuming and costly nature of histopathology examination. While deep learning-based classification models have shown promise in achieving optical biopsy with endoscopic images, they often suffer from a lack of explainability. To overcome this limitation, we introduce EndoFinder, a content-based image retrieval framework to find the 'digital twin' polyp in the reference database given a newly detected polyp. The clinical semantics of the new polyp can be inferred referring to the matched ones. EndoFinder pioneers a polyp-aware image encoder that is pre-trained on a large polyp dataset in a self-supervised way, merging masked image modeling with contrastive learning. This results in a generic embedding space ready for different downstream clinical tasks based on image retrieval. We validate the framework on polyp re-identification and optical biopsy tasks, with extensive experiments demonstrating that EndoFinder not only achieves explainable diagnostics but also matches the performance of supervised classification models. EndoFinder's reliance on image retrieval has the potential to support diverse downstream decision-making tasks during real-time colonoscopy procedures.
Related papers
- PolypDB: A Curated Multi-Center Dataset for Development of AI Algorithms in Colonoscopy [31.54817948734052]
We introduce PolypDB, a large scale publicly available dataset that contains 3934 still polyp images.
The dataset has been developed and verified by a team of 10 gastroenterologists.
We provide a benchmark on each modality using eight popular segmentation methods and six standard benchmark polyp detection methods.
arXiv Detail & Related papers (2024-08-19T05:36:01Z) - Towards Discriminative Representation with Meta-learning for
Colonoscopic Polyp Re-Identification [2.78481408391119]
Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras.
Traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset produce unsatisfactory retrieval performance.
We propose a simple but effective training method named Colo-ReID, which can help our model learn more general and discriminative knowledge.
arXiv Detail & Related papers (2023-08-02T04:10:14Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - YONA: You Only Need One Adjacent Reference-frame for Accurate and Fast
Video Polyp Detection [80.68520401539979]
textbfYONA (textbfYou textbfOnly textbfNeed one textbfAdjacent Reference-frame) is an efficient end-to-end training framework for video polyp detection.
Our proposed YONA outperforms previous state-of-the-art competitors by a large margin in both accuracy and speed.
arXiv Detail & Related papers (2023-06-06T13:53:15Z) - Stepwise Feature Fusion: Local Guides Global [14.394421688712052]
We propose a new State-Of-The-Art model for medical image segmentation, the SSFormer, which uses a pyramid Transformer encoder to improve the generalization ability of models.
Our proposed Progressive Locality Decoder can be adapted to the pyramid Transformer backbone to emphasize local features and attention dispersion.
arXiv Detail & Related papers (2022-03-07T10:36:38Z) - Automatic Polyp Segmentation via Multi-scale Subtraction Network [100.94922587360871]
In clinical practice, precise polyp segmentation provides important information in the early detection of colorectal cancer.
Most existing methods are based on U-shape structure and use element-wise addition or concatenation to fuse different level features progressively in decoder.
We propose a multi-scale subtraction network (MSNet) to segment polyp from colonoscopy image.
arXiv Detail & Related papers (2021-08-11T07:54:07Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images.
Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images.
We propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification.
arXiv Detail & Related papers (2021-08-05T09:31:46Z) - Advances in Artificial Intelligence to Reduce Polyp Miss Rates during
Colonoscopy [0.7619404259039283]
We introduce a new deep neural network architecture, which achieves state-of-the-art performance for polyp segmentation.
Our algorithm could be integrated into colonoscopy practice and assist gastroenterologists by reducing the number of polyps missed.
arXiv Detail & Related papers (2021-05-16T16:10:32Z) - Colonoscopy Polyp Detection: Domain Adaptation From Medical Report
Images to Real-time Videos [76.37907640271806]
We propose an Image-video-joint polyp detection network (Ivy-Net) to address the domain gap between colonoscopy images from historical medical reports and real-time videos.
Experiments on the collected dataset demonstrate that our Ivy-Net achieves the state-of-the-art result on colonoscopy video.
arXiv Detail & Related papers (2020-12-31T10:33:09Z) - PraNet: Parallel Reverse Attention Network for Polyp Segmentation [155.93344756264824]
We propose a parallel reverse attention network (PraNet) for accurate polyp segmentation in colonoscopy images.
We first aggregate the features in high-level layers using a parallel partial decoder (PPD)
In addition, we mine the boundary cues using a reverse attention (RA) module, which is able to establish the relationship between areas and boundary cues.
arXiv Detail & Related papers (2020-06-13T08:13:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.