CCIS-Diff: A Generative Model with Stable Diffusion Prior for Controlled Colonoscopy Image Synthesis
- URL: http://arxiv.org/abs/2411.12198v1
- Date: Tue, 19 Nov 2024 03:30:06 GMT
- Title: CCIS-Diff: A Generative Model with Stable Diffusion Prior for Controlled Colonoscopy Image Synthesis
- Authors: Yifan Xie, Jingge Wang, Tao Feng, Fei Ma, Yang Li,
- Abstract summary: We propose a Controlled generative model for high-quality Colonoscopy Image Synthesis based on a Diffusion architecture.
Our method offers precise control over both the spatial attributes (polyp location and shape) and clinical characteristics of polyps that align with clinical descriptions.
- Score: 7.1892156088672
- License:
- Abstract: Colonoscopy is crucial for identifying adenomatous polyps and preventing colorectal cancer. However, developing robust models for polyp detection is challenging by the limited size and accessibility of existing colonoscopy datasets. While previous efforts have attempted to synthesize colonoscopy images, current methods suffer from instability and insufficient data diversity. Moreover, these approaches lack precise control over the generation process, resulting in images that fail to meet clinical quality standards. To address these challenges, we propose CCIS-DIFF, a Controlled generative model for high-quality Colonoscopy Image Synthesis based on a Diffusion architecture. Our method offers precise control over both the spatial attributes (polyp location and shape) and clinical characteristics of polyps that align with clinical descriptions. Specifically, we introduce a blur mask weighting strategy to seamlessly blend synthesized polyps with the colonic mucosa, and a text-aware attention mechanism to guide the generated images to reflect clinical characteristics. Notably, to achieve this, we construct a new multi-modal colonoscopy dataset that integrates images, mask annotations, and corresponding clinical text descriptions. Experimental results demonstrate that our method generates high-quality, diverse colonoscopy images with fine control over both spatial constraints and clinical consistency, offering valuable support for downstream segmentation and diagnostic tasks.
Related papers
- Self-Prompting Polyp Segmentation in Colonoscopy using Hybrid Yolo-SAM 2 Model [18.61909523131399]
This paper presents a novel approach to polyp segmentation by integrating the Segment Anything Model (SAM 2) with the YOLOv8 model.
Our method leverages YOLOv8's bounding box predictions to autonomously generate input prompts for SAM 2, thereby reducing the need for manual annotations.
We conducted exhaustive tests on five benchmark colonoscopy image datasets and two colonoscopy video datasets, demonstrating that our method exceeds state-of-the-art models in both image and video segmentation tasks.
arXiv Detail & Related papers (2024-09-14T17:11:37Z) - Unsupervised Segmentation of Colonoscopy Images [0.7775266571852477]
We explore using self-supervised features from vision transformers in three challenging tasks for colonoscopy images.
Our results indicate that image-level features learned from DINO models achieve image classification performance comparable to fully supervised models.
arXiv Detail & Related papers (2023-12-19T20:59:19Z) - Towards Discriminative Representation with Meta-learning for
Colonoscopic Polyp Re-Identification [2.78481408391119]
Colonoscopic Polyp Re-Identification aims to match the same polyp from a large gallery with images from different views taken using different cameras.
Traditional methods for object ReID directly adopting CNN models trained on the ImageNet dataset produce unsatisfactory retrieval performance.
We propose a simple but effective training method named Colo-ReID, which can help our model learn more general and discriminative knowledge.
arXiv Detail & Related papers (2023-08-02T04:10:14Z) - Self-Supervised and Semi-Supervised Polyp Segmentation using Synthetic
Data [16.356954231068077]
Early detection of colorectal polyps is of utmost importance for their treatment and for colorectal cancer prevention.
Computer vision techniques have the potential to aid professionals in the diagnosis stage, where colonoscopies are manually carried out to examine the entirety of the patient's colon.
The main challenge in medical imaging is the lack of data, and a further challenge specific to polyp segmentation approaches is the difficulty of manually labeling the available data.
We propose an end-to-end model for polyp segmentation that integrates real and synthetic data to artificially increase the size of the datasets and aid the training when unlabeled samples are available.
arXiv Detail & Related papers (2023-07-22T09:57:58Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
Lung nodule detection in chest X-ray (CXR) images is common to early screening of lung cancers.
Deep-learning-based Computer-Assisted Diagnosis (CAD) systems can support radiologists for nodule screening in CXR.
To alleviate the limited availability of such datasets, lung nodule synthesis methods are proposed for the sake of data augmentation.
arXiv Detail & Related papers (2022-07-19T16:38:48Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
A computer-aided diagnosis system is required to assist accurate diagnosis from colonoscopy images.
Most previous studies at-tempt to develop models for polyp differentiation using Narrow-Band Imaging (NBI) or other enhanced images.
We propose a novel framework based on a teacher-student architecture for the accurate colorectal polyp classification.
arXiv Detail & Related papers (2021-08-05T09:31:46Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
We present a novel segmentation strategy, co-heterogenous and adaptive segmentation (CHASe)
We propose a versatile framework that fuses appearance based semi-supervision, mask based adversarial domain adaptation, and pseudo-labeling.
CHASe can further improve pathological liver mask Dice-Sorensen coefficients by ranges of $4.2% sim 9.4%$.
arXiv Detail & Related papers (2020-05-27T06:58:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.