論文の概要: Model Inversion Attacks Through Target-Specific Conditional Diffusion Models
- arxiv url: http://arxiv.org/abs/2407.11424v1
- Date: Tue, 16 Jul 2024 06:38:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 16:22:29.738496
- Title: Model Inversion Attacks Through Target-Specific Conditional Diffusion Models
- Title(参考訳): 目標条件付き拡散モデルによるモデル反転攻撃
- Authors: Ouxiang Li, Yanbin Hao, Zhicai Wang, Bin Zhu, Shuo Wang, Zaixi Zhang, Fuli Feng,
- Abstract要約: モデルアタック(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
- 参考スコア(独自算出の注目度): 54.69008212790426
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Model inversion attacks (MIAs) aim to reconstruct private images from a target classifier's training set, thereby raising privacy concerns in AI applications. Previous GAN-based MIAs tend to suffer from inferior generative fidelity due to GAN's inherent flaws and biased optimization within latent space. To alleviate these issues, leveraging on diffusion models' remarkable synthesis capabilities, we propose Diffusion-based Model Inversion (Diff-MI) attacks. Specifically, we introduce a novel target-specific conditional diffusion model (CDM) to purposely approximate target classifier's private distribution and achieve superior accuracy-fidelity balance. Our method involves a two-step learning paradigm. Step-1 incorporates the target classifier into the entire CDM learning under a pretrain-then-finetune fashion, with creating pseudo-labels as model conditions in pretraining and adjusting specified layers with image predictions in fine-tuning. Step-2 presents an iterative image reconstruction method, further enhancing the attack performance through a combination of diffusion priors and target knowledge. Additionally, we propose an improved max-margin loss that replaces the hard max with top-k maxes, fully leveraging feature information and soft labels from the target classifier. Extensive experiments demonstrate that Diff-MI significantly improves generative fidelity with an average decrease of 20% in FID while maintaining competitive attack accuracy compared to state-of-the-art methods across various datasets and models. We will release our code and models.
- Abstract(参考訳): モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和し,拡散モデルの顕著な合成機能を活用するために,拡散型モデル反転(Diff-MI)攻撃を提案する。
具体的には,ターゲット特定条件拡散モデル(CDM)を導入し,ターゲット分類器の個人分布を意図的に近似し,精度・忠実バランスを向上する。
本手法は2段階の学習パラダイムを含む。
Step-1は、対象の分類器を、事前訓練と微調整を行う際にモデル条件として擬似ラベルを作成することによって、訓練前のファイントゥン方式でCDM学習全体に組み込む。
ステップ2では、拡散先行と目標知識の組み合わせにより、攻撃性能をさらに向上する反復画像再構成手法を提案する。
さらに,最大値を最大値に置き換え,特徴情報とソフトラベルをターゲット分類器から完全に活用する改良された最大値損失を提案する。
大規模な実験により、Diff-MIは、様々なデータセットやモデルにわたる最先端の手法と比較して、競合攻撃精度を維持しながら、FIDの平均20%の低下で生成忠実度を著しく向上することが示された。
コードとモデルをリリースします。
関連論文リスト
- A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks [43.98557963966335]
Model Inversion (MI)攻撃は、出力情報を利用して、リリースされたモデルからプライバシーに敏感なトレーニングデータを再構築することを目的としている。
GAN(Generative Adversarial Network)の最近の進歩は、MI攻撃の性能向上に大きく貢献している。
本稿では,GAN構造を分解し,中間ブロック間の特徴を利用する中間特徴拡張生成モデル変換(IF-GMI)を提案する。
論文 参考訳(メタデータ) (2024-07-18T19:16:22Z) - Gradient Inversion of Federated Diffusion Models [4.1355611383748005]
拡散モデルは、非常に高解像度の画像データを生成する欠陥生成モデルになりつつある。
本稿では,勾配反転攻撃のプライバシーリスクについて検討する。
本稿では,未知データの最適化をコーディネートする三重最適化GIDM+を提案する。
論文 参考訳(メタデータ) (2024-05-30T18:00:03Z) - Class-Prototype Conditional Diffusion Model with Gradient Projection for Continual Learning [20.175586324567025]
破滅的な忘れ方を減らすことは、継続的な学習における重要なハードルである。
大きな問題は、生成したデータの品質がオリジナルのものと比べて低下することである。
本稿では,ジェネレータにおける画像品質を向上させる連続学習のためのGRに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-10T17:39:42Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
モデルアタック(MIA)は、深層学習モデルの到達不可能なトレーニングセットからプライベートデータを復元することを目的としている。
そこで本研究では,条件拡散モデル(CDM)を応用したMIA手法を開発し,対象ラベル下でのサンプルの回収を行う。
実験結果から,本手法は従来手法よりも高い精度で類似したサンプルをターゲットラベルに生成できることが示唆された。
論文 参考訳(メタデータ) (2023-07-17T12:14:24Z) - Precision-Recall Divergence Optimization for Generative Modeling with
GANs and Normalizing Flows [54.050498411883495]
本研究では,ジェネレーティブ・アドバイサル・ネットワークや正規化フローなどの生成モデルのための新しいトレーニング手法を開発した。
指定された精度-リコールトレードオフを達成することは、textitPR-divergencesと呼ぶ家族からのユニークな$f$-divergenceを最小化することを意味する。
当社のアプローチは,ImageNetなどのデータセットでテストした場合の精度とリコールの両面で,BigGANのような既存の最先端モデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-05-30T10:07:17Z) - CamoDiffusion: Camouflaged Object Detection via Conditional Diffusion
Models [72.93652777646233]
カモフラーゲ型物体検出(COD)は、カモフラーゲ型物体とその周囲の類似性が高いため、コンピュータビジョンにおいて難しい課題である。
本研究では,CODを拡散モデルを利用した条件付きマスク生成タスクとして扱う新しいパラダイムを提案する。
カモ拡散(CamoDiffusion)と呼ばれる本手法では,拡散モデルのデノナイズプロセスを用いてマスクの雑音を反復的に低減する。
論文 参考訳(メタデータ) (2023-05-29T07:49:44Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks [13.374754708543449]
モデルアタック(MIA)は、モデルが学習した知識を活用して、対象のインバージョントレーニングデータからクラスワイズ特性を反映した合成画像を作成することを目的としている。
従来の研究では、特定のターゲットモデルに合わせた画像の先行画像として、GAN(Generative Adversarial Network)を用いたジェネレーティブMIAを開発した。
ターゲットモデルと画像間の依存性を緩和し、訓練された単一のGANを使用することで、幅広いターゲットを攻撃できるプラグイン&プレイアタック(Plug & Play Attacks)を提案する。
論文 参考訳(メタデータ) (2022-01-28T15:25:50Z) - Knowledge-Enriched Distributional Model Inversion Attacks [49.43828150561947]
モデルインバージョン(MI)攻撃は、モデルパラメータからトレーニングデータを再構成することを目的としている。
本稿では,パブリックデータからプライベートモデルに対する攻撃を行うのに役立つ知識を抽出する,新しい反転型GANを提案する。
実験の結果,これらの手法を組み合わせることで,最先端MI攻撃の成功率を150%向上させることができることがわかった。
論文 参考訳(メタデータ) (2020-10-08T16:20:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。