論文の概要: Gradient Inversion of Federated Diffusion Models
- arxiv url: http://arxiv.org/abs/2405.20380v1
- Date: Thu, 30 May 2024 18:00:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 18:44:15.868106
- Title: Gradient Inversion of Federated Diffusion Models
- Title(参考訳): フェデレート拡散モデルの勾配インバージョン
- Authors: Jiyue Huang, Chi Hong, Lydia Y. Chen, Stefanie Roos,
- Abstract要約: 拡散モデルは、非常に高解像度の画像データを生成する欠陥生成モデルになりつつある。
本稿では,勾配反転攻撃のプライバシーリスクについて検討する。
本稿では,未知データの最適化をコーディネートする三重最適化GIDM+を提案する。
- 参考スコア(独自算出の注目度): 4.1355611383748005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models are becoming defector generative models, which generate exceptionally high-resolution image data. Training effective diffusion models require massive real data, which is privately owned by distributed parties. Each data party can collaboratively train diffusion models in a federated learning manner by sharing gradients instead of the raw data. In this paper, we study the privacy leakage risk of gradient inversion attacks. First, we design a two-phase fusion optimization, GIDM, to leverage the well-trained generative model itself as prior knowledge to constrain the inversion search (latent) space, followed by pixel-wise fine-tuning. GIDM is shown to be able to reconstruct images almost identical to the original ones. Considering a more privacy-preserving training scenario, we then argue that locally initialized private training noise $\epsilon$ and sampling step t may raise additional challenges for the inversion attack. To solve this, we propose a triple-optimization GIDM+ that coordinates the optimization of the unknown data, $\epsilon$ and $t$. Our extensive evaluation results demonstrate the vulnerability of sharing gradient for data protection of diffusion models, even high-resolution images can be reconstructed with high quality.
- Abstract(参考訳): 拡散モデルは、非常に高解像度の画像データを生成する欠陥生成モデルになりつつある。
効果的な拡散モデルの訓練には、分散パーティによってプライベートに所有される大量の実データが必要である。
各データパーティは、生データの代わりに勾配を共有することで、連合学習方式で拡散モデルを協調的に訓練することができる。
本稿では,勾配反転攻撃のプライバシー漏洩リスクについて検討する。
まず,2相融合最適化(GIDM)を設計し,よく訓練された生成モデル自体を事前知識として活用し,逆探索(ラテント)空間を制約し,次いでピクセルワイズ微調整を行う。
GIDMはオリジナルの画像とほぼ同一の画像を再構成できることが示されている。
よりプライバシー保護のトレーニングシナリオを考えると、ローカルに初期化されたプライベートトレーニングノイズ$\epsilon$とサンプリングステップtが、逆攻撃のさらなる課題を引き起こす可能性がある、と私たちは主張する。
これを解決するために、未知データの最適化を調整する三重最適化GIDM+, $\epsilon$, $t$を提案する。
広範に評価した結果,高解像度画像であっても高品質に再構成できる拡散モデルのデータ保護のための共有勾配の脆弱性が示された。
関連論文リスト
- Learning Differentially Private Diffusion Models via Stochastic Adversarial Distillation [20.62325580203137]
DP-SADは, 逆蒸留法により個人拡散モデルを訓練する。
画像の質を向上するために,画像が教師と学生のどちらであるかを識別する識別器を導入する。
論文 参考訳(メタデータ) (2024-08-27T02:29:29Z) - Model Inversion Attacks Through Target-Specific Conditional Diffusion Models [54.69008212790426]
モデル反転攻撃(MIA)は、ターゲット分類器のトレーニングセットからプライベートイメージを再構築することを目的としており、それによってAIアプリケーションにおけるプライバシー上の懸念が高まる。
従来のGANベースのMIAは、GANの固有の欠陥と潜伏空間における最適化の偏りにより、劣った遺伝子的忠実度に悩まされる傾向にある。
これらの問題を緩和するために拡散モデル反転(Diff-MI)攻撃を提案する。
論文 参考訳(メタデータ) (2024-07-16T06:38:49Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Phoenix: A Federated Generative Diffusion Model [6.09170287691728]
大規模な集中型データセットで生成モデルをトレーニングすることで、データのプライバシやセキュリティ、アクセシビリティといった面での課題が発生する可能性がある。
本稿では,フェデレートラーニング(FL)技術を用いて,複数のデータソースにまたがる拡散確率モデル(DDPM)の学習手法を提案する。
論文 参考訳(メタデータ) (2023-06-07T01:43:09Z) - Training on Thin Air: Improve Image Classification with Generated Data [28.96941414724037]
Diffusion Inversionは、画像分類のための多種多様な高品質なトレーニングデータを生成するための、シンプルで効果的な方法である。
提案手法は,元のデータ分布を捕捉し,画像を安定拡散の潜在空間に反転させることにより,データカバレッジを確保する。
生成した画像が元のデータセットに取って代わることに成功した3つの重要なコンポーネントを特定します。
論文 参考訳(メタデータ) (2023-05-24T16:33:02Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
拡散モデルは、ログのような目的に近似して訓練される。
本稿では,下流目的のための拡散モデルを直接最適化するための強化学習手法について検討する。
本稿では,多段階決定問題としてデノベーションを行うことによって,ポリシー勾配アルゴリズムのクラスを実現する方法について述べる。
論文 参考訳(メタデータ) (2023-05-22T17:57:41Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
本稿では, 劣化データのみに基づく生成拡散モデルのための新しいトレーニング手法を提案する。
顔画像と磁気共鳴画像(MRI)の撮影技術について紹介する。
論文 参考訳(メタデータ) (2023-05-22T15:27:20Z) - Hierarchical Integration Diffusion Model for Realistic Image Deblurring [71.76410266003917]
拡散モデル (DM) は画像劣化に導入され, 有望な性能を示した。
本稿では,階層型統合拡散モデル(HI-Diff)を提案する。
人工的および実世界のぼかしデータセットの実験は、HI-Diffが最先端の手法より優れていることを示した。
論文 参考訳(メタデータ) (2023-05-22T12:18:20Z) - Person Image Synthesis via Denoising Diffusion Model [116.34633988927429]
本研究では,高忠実度人物画像合成に拡散モデルをいかに応用できるかを示す。
2つの大規模ベンチマークとユーザスタディの結果は、挑戦的なシナリオ下で提案したアプローチのフォトリアリズムを実証している。
論文 参考訳(メタデータ) (2022-11-22T18:59:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。