RIMformer: An End-to-End Transformer for FMCW Radar Interference Mitigation
- URL: http://arxiv.org/abs/2407.11459v2
- Date: Wed, 17 Jul 2024 05:01:27 GMT
- Title: RIMformer: An End-to-End Transformer for FMCW Radar Interference Mitigation
- Authors: Ziang Zhang, Guangzhi Chen, Youlong Weng, Shunchuan Yang, Zhiyu Jia, Jingxuan Chen,
- Abstract summary: A novel FMCW radar interference mitigation method, termed as RIMformer, is proposed by using an end-to-end Transformer-based structure.
The architecture is designed to process time-domain IF signals in an end-to-end manner.
The results show that the proposed RIMformer can effectively mitigate interference and restore the target signals.
- Score: 1.8063750621475454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Frequency-modulated continuous-wave (FMCW) radar plays a pivotal role in the field of remote sensing. The increasing degree of FMCW radar deployment has increased the mutual interference, which weakens the detection capabilities of radars and threatens reliability and safety of systems. In this paper, a novel FMCW radar interference mitigation (RIM) method, termed as RIMformer, is proposed by using an end-to-end Transformer-based structure. In the RIMformer, a dual multi-head self-attention mechanism is proposed to capture the correlations among the distinct distance elements of intermediate frequency (IF) signals. Additionally, an improved convolutional block is integrated to harness the power of convolution for extracting local features. The architecture is designed to process time-domain IF signals in an end-to-end manner, thereby avoiding the need for additional manual data processing steps. The improved decoder structure ensures the parallelization of the network to increase its computational efficiency. Simulation and measurement experiments are carried out to validate the accuracy and effectiveness of the proposed method. The results show that the proposed RIMformer can effectively mitigate interference and restore the target signals.
Related papers
- Aircraft Radar Altimeter Interference Mitigation Through a CNN-Layer Only Denoising Autoencoder Architecture [0.7538606213726906]
We show that a CNN-layer only autoencoder architecture can be utilized to improve the accuracy of a radar altimeter's ranging estimate.
FMCW radar signals of up to 40,000 IQ samples can be reliably reconstructed.
arXiv Detail & Related papers (2024-10-04T13:32:05Z) - Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
Multi-generator Wave Energy Converters (WEC) must handle multiple simultaneous waves coming from different directions called spread waves.
These complex devices need controllers with multiple objectives of energy capture efficiency, reduction of structural stress to limit maintenance, and proactive protection against high waves.
In this paper, we explore different function approximations for the policy and critic networks in modeling the sequential nature of the system dynamics.
arXiv Detail & Related papers (2024-04-17T02:04:10Z) - End-to-End Training of Neural Networks for Automotive Radar Interference
Mitigation [9.865041274657823]
We propose a new method for training neural networks (NNs) for frequency modulated continuous wave (WFMC) radar mutual interference mitigation.
Instead of training NNs to regress from interfered to clean radar signals as in previous work, we train NNs directly on object detection maps.
We do so by performing a continuous relaxation of the cell-averaging constant false alarm rate (CA-CFAR) peak detector, which is a well-established algorithm for object detection using radar.
arXiv Detail & Related papers (2023-12-15T13:47:16Z) - Enhancing Reliability in Federated mmWave Networks: A Practical and
Scalable Solution using Radar-Aided Dynamic Blockage Recognition [14.18507067281377]
This article introduces a new method to improve the dependability of millimeter-wave (mmWave) and terahertz (THz) network services in dynamic outdoor environments.
In these settings, line-of-sight (LoS) connections are easily interrupted by moving obstacles like humans and vehicles.
The proposed approach, coined as Radar-aided blockage Dynamic Recognition (RaDaR), leverages radar measurements and federated learning (FL) to train a dual-output neural network (NN) model.
arXiv Detail & Related papers (2023-06-22T10:10:25Z) - Non-contact Sensing for Anomaly Detection in Wind Turbine Blades: A
focus-SVDD with Complex-Valued Auto-Encoder Approach [2.967390112155113]
We enhance the quality assurance of manufacturing utilizing FMCW radar as a non-destructive sensing modality.
We propose a novel anomaly detection methodology called focus Support Vector Data Description (focus-SVDD)
The effectiveness of the proposed method is demonstrated through its application to collected data.
arXiv Detail & Related papers (2023-06-19T09:54:34Z) - Spectrum Breathing: Protecting Over-the-Air Federated Learning Against
Interference [101.9031141868695]
Mobile networks can be compromised by interference from neighboring cells or jammers.
We propose Spectrum Breathing, which cascades-gradient pruning and spread spectrum to suppress interference without bandwidth expansion.
We show a performance tradeoff between gradient-pruning and interference-induced error as regulated by the breathing depth.
arXiv Detail & Related papers (2023-05-10T07:05:43Z) - Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments [93.30657979626858]
We propose a deep actor-critic algorithm that accounts for channel correlations and destination motion.
We show that, when channels aretemporally correlated, the inclusion of the SNR in the state representation with function approximation in ways that inhibit convergence.
arXiv Detail & Related papers (2022-11-02T22:07:36Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
We propose the use of Complex-Valued Convolutional Neural Networks (CVCNNs) to address the issue of mutual interference between radar sensors.
CVCNNs increase data efficiency, speeds up network training and substantially improves the conservation of phase information during interference removal.
arXiv Detail & Related papers (2021-04-29T10:06:29Z) - Digital Beamforming Robust to Time-Varying Carrier Frequency Offset [21.18926642388997]
We present novel beamforming algorithms that are robust to signal corruptions arising from a time-variant carrier frequency offset.
We propose two atomic-norm-minimization (ANM)-based methods to design a weight vector that can be used to cancel interference when there exist unknown time-varying frequency drift in the pilot and interferer signals.
arXiv Detail & Related papers (2021-03-08T18:08:56Z) - Distributional Reinforcement Learning for mmWave Communications with
Intelligent Reflectors on a UAV [119.97450366894718]
A novel communication framework that uses an unmanned aerial vehicle (UAV)-carried intelligent reflector (IR) is proposed.
In order to maximize the downlink sum-rate, the optimal precoding matrix (at the base station) and reflection coefficient (at the IR) are jointly derived.
arXiv Detail & Related papers (2020-11-03T16:50:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.