Multi-Channel Masked Autoencoder and Comprehensive Evaluations for Reconstructing 12-Lead ECG from Arbitrary Single-Lead ECG
- URL: http://arxiv.org/abs/2407.11481v2
- Date: Thu, 3 Oct 2024 09:38:12 GMT
- Title: Multi-Channel Masked Autoencoder and Comprehensive Evaluations for Reconstructing 12-Lead ECG from Arbitrary Single-Lead ECG
- Authors: Jiarong Chen, Wanqing Wu, Tong Liu, Shenda Hong,
- Abstract summary: This study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG.
In the signal-level evaluation, the mean square errors of 0.0317 and 0.1034, Pearson correlation coefficients of 0.7885 and 0.7420.
In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874.
- Score: 19.74009541199362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Electrocardiogram (ECG) has emerged as a widely accepted diagnostic instrument for cardiovascular diseases (CVD). The standard clinical 12-lead ECG configuration causes considerable inconvenience and discomfort, while wearable devices offers a more practical alternative. To reduce information gap between 12-lead ECG and single-lead ECG, this study proposes a multi-channel masked autoencoder (MCMA) for reconstructing 12-Lead ECG from arbitrary single-lead ECG, and a comprehensive evaluation benchmark, ECGGenEval, encompass the signal-level, feature-level, and diagnostic-level evaluations. MCMA can achieve the state-of-the-art performance. In the signal-level evaluation, the mean square errors of 0.0317 and 0.1034, Pearson correlation coefficients of 0.7885 and 0.7420. In the feature-level evaluation, the average standard deviation of the mean heart rate across the generated 12-lead ECG is 1.0481, the coefficient of variation is 1.58%, and the range is 3.2874. In the diagnostic-level evaluation, the average F1-score with two generated 12-lead ECG from different single-lead ECG are 0.8233 and 0.8410.
Related papers
- Self-supervised inter-intra period-aware ECG representation learning for detecting atrial fibrillation [41.82319894067087]
We propose an inter-intra period-aware ECG representation learning approach.
Considering ECGs of atrial fibrillation patients exhibit the irregularity in RR intervals and the absence of P-waves, we develop specific pre-training tasks for interperiod and intraperiod representations.
Our approach demonstrates remarkable AUC performances on the BTCH dataset, textiti.e., 0.953/0.996 for paroxysmal/persistent atrial fibrillation detection.
arXiv Detail & Related papers (2024-10-08T10:03:52Z) - SQUWA: Signal Quality Aware DNN Architecture for Enhanced Accuracy in Atrial Fibrillation Detection from Noisy PPG Signals [37.788535094404644]
Atrial fibrillation (AF) significantly increases the risk of stroke, heart disease, and mortality.
Photoplethysmography ( PPG) signals are susceptible to corruption from motion artifacts and other factors often encountered in ambulatory settings.
We propose a novel deep learning model, designed to learn how to retain accurate predictions from partially corrupted PPG.
arXiv Detail & Related papers (2024-04-15T01:07:08Z) - MEIT: Multi-Modal Electrocardiogram Instruction Tuning on Large Language Models for Report Generation [41.324530807795256]
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions.
Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation.
We propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions.
arXiv Detail & Related papers (2024-03-07T23:20:56Z) - PulseNet: Deep Learning ECG-signal classification using random
augmentation policy and continous wavelet transform for canines [46.09869227806991]
evaluating canine electrocardiograms (ECG) require skilled veterinarians.
Current availability of veterinary cardiologists for ECG interpretation and diagnostic support is limited.
We implement a deep convolutional neural network (CNN) approach for classifying canine electrocardiogram sequences as either normal or abnormal.
arXiv Detail & Related papers (2023-05-17T09:06:39Z) - Enhancing Deep Learning-based 3-lead ECG Classification with Heartbeat
Counting and Demographic Data Integration [0.0]
This article introduces two novel techniques to improve the performance of the current deep learning system for 3-lead ECG classification.
Specifically, we propose a multi-task learning scheme in the form of the number of heartbeats regression and an effective mechanism to integrate patient demographic data into the system.
With these two advancements, we got classification performance in terms of F1 scores of 0.9796 and 0.8140 on two large-scale ECG datasets.
arXiv Detail & Related papers (2022-08-15T09:33:36Z) - A Mixed-Domain Self-Attention Network for Multilabel Cardiac
Irregularity Classification Using Reduced-Lead Electrocardiogram [10.351641831500924]
This study proposes Mixed-Domain Self-Attention Resnet (MDARsn) to identify cardiac abnormalities from reduced-lead ECG.
Our classifiers received scores of 0.602, 0.593, 0.597, 0.591, and 0.589 for the 12-lead, 6-lead, 4-lead, 3-lead, and 2-lead versions of the hidden validation set.
arXiv Detail & Related papers (2022-04-29T07:35:08Z) - IMLE-Net: An Interpretable Multi-level Multi-channel Model for ECG
Classification [0.9449650062296824]
In clinical settings, a cardiologist makes a diagnosis based on the standard 12-channel ECG recording.
We propose a model that leverages the multiple-channel information available in the standard ECG recordings and learns patterns at the beat, rhythm, and channel level.
The experimental results show that our model achieved a macro-averaged ROC-AUC score of 0.9216, mean accuracy of 88.85%, and a maximum F1 score of 0.8057 on the PTB-XL dataset.
arXiv Detail & Related papers (2022-04-06T16:29:10Z) - Generalizing electrocardiogram delineation: training convolutional
neural networks with synthetic data augmentation [63.51064808536065]
Existing databases for ECG delineation are small, being insufficient in size and in the array of pathological conditions they represent.
This article delves has two main contributions. First, a pseudo-synthetic data generation algorithm was developed, based in probabilistically composing ECG traces given "pools" of fundamental segments, as cropped from the original databases, and a set of rules for their arrangement into coherent synthetic traces.
Second, two novel segmentation-based loss functions have been developed, which attempt at enforcing the prediction of an exact number of independent structures and at producing closer segmentation boundaries by focusing on a reduced number of samples.
arXiv Detail & Related papers (2021-11-25T10:11:41Z) - Synthesis of standard 12-lead electrocardiograms using two dimensional
generative adversarial network [0.0]
The proposed model is able to produce synthetic standard 12-lead ECG signals with success rates of 98% for LVH, 93% for LBBB, 79% for ACUTMI, and 59% for Normal.
It is feasible to use a 2D GAN to produce standard 12-lead ECGs suitable to augment artificially a diverse database of real ECGs.
arXiv Detail & Related papers (2021-06-02T00:59:04Z) - Multilabel 12-Lead Electrocardiogram Classification Using Gradient
Boosting Tree Ensemble [64.29529357862955]
We build an algorithm using gradient boosted tree ensembles fitted on morphology and signal processing features to classify ECG diagnosis.
For each lead, we derive features from heart rate variability, PQRST template shape, and the full signal waveform.
We join the features of all 12 leads to fit an ensemble of gradient boosting decision trees to predict probabilities of ECG instances belonging to each class.
arXiv Detail & Related papers (2020-10-21T18:11:36Z) - Interpretable Deep Learning for Automatic Diagnosis of 12-lead
Electrocardiogram [15.464768773761527]
We developed a deep neural network for multi-label classification of cardiac arrhythmias in 12-lead ECG recordings.
The proposed model achieved an average area under the receiver operating characteristic curve (AUC) of 0.970 and an average F1 score of 0.813.
The best-performing leads are lead I, aVR, and V5 among 12 leads.
arXiv Detail & Related papers (2020-10-20T14:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.