論文の概要: A PLMs based protein retrieval framework
- arxiv url: http://arxiv.org/abs/2407.11548v1
- Date: Tue, 16 Jul 2024 09:52:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 19:46:15.003822
- Title: A PLMs based protein retrieval framework
- Title(参考訳): PLMを用いたタンパク質検索フレームワーク
- Authors: Yuxuan Wu, Xiao Yi, Yang Tan, Huiqun Yu, Guisheng Fan,
- Abstract要約: 本稿では,配列類似性に対するバイアスを緩和する新規なタンパク質検索フレームワークを提案する。
我々のフレームワークは、タンパク質の配列を高次元の特徴空間に埋め込むために、タンパク質言語モデル(PLM)を主導的に活用する。
大規模な実験により、我々のフレームワークは類似タンパク質と異種タンパク質の両方を等しく回収できることが示された。
- 参考スコア(独自算出の注目度): 4.110243520064533
- License:
- Abstract: Protein retrieval, which targets the deconstruction of the relationship between sequences, structures and functions, empowers the advancing of biology. Basic Local Alignment Search Tool (BLAST), a sequence-similarity-based algorithm, has proved the efficiency of this field. Despite the existing tools for protein retrieval, they prioritize sequence similarity and probably overlook proteins that are dissimilar but share homology or functionality. In order to tackle this problem, we propose a novel protein retrieval framework that mitigates the bias towards sequence similarity. Our framework initiatively harnesses protein language models (PLMs) to embed protein sequences within a high-dimensional feature space, thereby enhancing the representation capacity for subsequent analysis. Subsequently, an accelerated indexed vector database is constructed to facilitate expedited access and retrieval of dense vectors. Extensive experiments demonstrate that our framework can equally retrieve both similar and dissimilar proteins. Moreover, this approach enables the identification of proteins that conventional methods fail to uncover. This framework will effectively assist in protein mining and empower the development of biology.
- Abstract(参考訳): タンパク質の検索は、配列、構造、機能の関係の分解を目標とし、生物学の進歩を促進する。
シーケンス類似性に基づくアルゴリズムBLAST(Basic Local Alignment Search Tool)は,この領域の効率性を実証した。
既存のタンパク質検索ツールにもかかわらず、配列の類似性を優先し、おそらく相似ではないがホモロジーや機能を共有するタンパク質を見落としている。
この問題に対処するために,配列類似性に対するバイアスを緩和する新規なタンパク質検索フレームワークを提案する。
本フレームワークは,タンパク質の配列を高次元の特徴空間に埋め込むために,タンパク質言語モデル(PLM)を積極的に活用することにより,その後の解析における表現能力を向上させる。
その後、高速化されたインデックス付きベクトルデータベースを構築し、高密度ベクトルの高速なアクセスと検索を容易にする。
大規模な実験により、我々のフレームワークは類似タンパク質と異種タンパク質の両方を等しく回収できることが示された。
さらに、このアプローチは従来の方法では発見できなかったタンパク質の同定を可能にする。
この枠組みは、タンパク質の採掘を効果的に支援し、生物学の発展を促進する。
関連論文リスト
- Protein Representation Learning with Sequence Information Embedding: Does it Always Lead to a Better Performance? [4.7077642423577775]
本稿では,アミノ酸構造表現のみに基づく局所幾何アライメント手法ProtLOCAを提案する。
本手法は,構造的に整合性のあるタンパク質ドメインとより迅速かつ正確にマッチングすることで,既存の配列および構造に基づく表現学習法より優れる。
論文 参考訳(メタデータ) (2024-06-28T08:54:37Z) - ProtT3: Protein-to-Text Generation for Text-based Protein Understanding [88.43323947543996]
言語モデル(LM)は、タンパク質のテキスト記述を理解するのに優れている。
タンパク質言語モデル(PLM)は、タンパク質データを理解し、高品質な表現に変換するが、テキストを処理するのに苦労する。
ProtT3は、テキストベースのタンパク質理解のための、タンパク質からテキストへの生成のためのフレームワークである。
論文 参考訳(メタデータ) (2024-05-21T08:06:13Z) - ProLLM: Protein Chain-of-Thoughts Enhanced LLM for Protein-Protein Interaction Prediction [54.132290875513405]
タンパク質-タンパク質相互作用(PPI)の予測は、生物学的機能や疾患を理解する上で重要である。
PPI予測に対する従来の機械学習アプローチは、主に直接的な物理的相互作用に焦点を当てていた。
PPIに適したLLMを用いた新しいフレームワークProLLMを提案する。
論文 参考訳(メタデータ) (2024-03-30T05:32:42Z) - ProtIR: Iterative Refinement between Retrievers and Predictors for
Protein Function Annotation [38.019425619750265]
本稿では,タンパク質間類似性モデリングを取り入れた関数予測器の改良を目的とした,新しい変分擬似類似性フレームワークProtIRを提案する。
ProtIRは、バニラ予測に基づく手法よりも約10%改善されている。
タンパク質言語モデルに基づく手法と同等の性能を発揮するが、大規模な事前学習は必要としない。
論文 参考訳(メタデータ) (2024-02-10T17:31:46Z) - Neural Embeddings for Protein Graphs [0.8258451067861933]
幾何学ベクトル空間にタンパク質グラフを埋め込む新しい枠組みを提案する。
タンパク質グラフ間の構造的距離を保存するエンコーダ関数を学習する。
本フレームワークは,タンパク質構造分類の課題において,顕著な結果をもたらす。
論文 参考訳(メタデータ) (2023-06-07T14:50:34Z) - A Latent Diffusion Model for Protein Structure Generation [50.74232632854264]
本稿では,タンパク質モデリングの複雑さを低減できる潜在拡散モデルを提案する。
提案手法は, 高い設計性と効率性を有する新規なタンパク質のバックボーン構造を効果的に生成できることを示す。
論文 参考訳(メタデータ) (2023-05-06T19:10:19Z) - Retrieved Sequence Augmentation for Protein Representation Learning [40.13920287967866]
本稿では,タンパク質表現学習のための検索シーケンス拡張について,アライメントや前処理を伴わずに導入する。
本モデルでは,新しいタンパク質ドメインに移行し,デノボタンパク質の予測においてMSAトランスフォーマーより優れていることを示す。
我々の研究はタンパク質の予測における大きなギャップを埋め、タンパク質配列を理解するのに必要なドメイン知識の解読に一歩近づいた。
論文 参考訳(メタデータ) (2023-02-24T10:31:45Z) - Learning Geometrically Disentangled Representations of Protein Folding
Simulations [72.03095377508856]
この研究は、薬物標的タンパク質の構造的アンサンブルに基づいて生成ニューラルネットワークを学習することに焦点を当てている。
モデル課題は、様々な薬物分子に結合したタンパク質の構造的変動を特徴付けることである。
その結果,我々の幾何学的学習に基づく手法は,複雑な構造変化を生成するための精度と効率の両方を享受できることがわかった。
論文 参考訳(メタデータ) (2022-05-20T19:38:00Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Protein Representation Learning by Geometric Structure Pretraining [27.723095456631906]
既存のアプローチは通常、多くの未ラベルアミノ酸配列で事前訓練されたタンパク質言語モデルである。
まず,タンパク質の幾何学的特徴を学習するための単純かつ効果的なエンコーダを提案する。
関数予測と折り畳み分類の両タスクの実験結果から,提案した事前学習法は,より少ないデータを用いた最先端のシーケンスベース手法と同等あるいは同等であることがわかった。
論文 参考訳(メタデータ) (2022-03-11T17:52:13Z) - BERTology Meets Biology: Interpreting Attention in Protein Language
Models [124.8966298974842]
注目レンズを用いたタンパク質トランスフォーマーモデルの解析方法を示す。
注意はタンパク質の折りたたみ構造を捉え、基礎となる配列では遠く離れているが、三次元構造では空間的に近接しているアミノ酸を接続する。
また、注意とタンパク質構造との相互作用を三次元的に可視化する。
論文 参考訳(メタデータ) (2020-06-26T21:50:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。