論文の概要: Graph Dimension Attention Networks for Enterprise Credit Assessment
- arxiv url: http://arxiv.org/abs/2407.11615v1
- Date: Tue, 16 Jul 2024 11:24:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 15:23:07.408297
- Title: Graph Dimension Attention Networks for Enterprise Credit Assessment
- Title(参考訳): 企業クレジットアセスメントのためのグラフ次元注意ネットワーク
- Authors: Shaopeng Wei, Beni Egressy, Xingyan Chen, Yu Zhao, Fuzhen Zhuang, Roger Wattenhofer, Gang Kou,
- Abstract要約: グラフ次元注意ネットワーク(GDAN)という新しいアーキテクチャを提案する。
GDANは、細粒度のリスク関連特性を捉えるための次元レベルの注意機構を組み込んでいる。
金融シナリオにおけるGNN手法の解釈可能性について検討し、GDAN-DistShiftと呼ばれるGDANのためのデータ中心の説明器を提案する。
- 参考スコア(独自算出の注目度): 40.87056211723355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Enterprise credit assessment is critical for evaluating financial risk, and Graph Neural Networks (GNNs), with their advanced capability to model inter-entity relationships, are a natural tool to get a deeper understanding of these financial networks. However, existing GNN-based methodologies predominantly emphasize entity-level attention mechanisms for contagion risk aggregation, often overlooking the heterogeneous importance of different feature dimensions, thus falling short in adequately modeling credit risk levels. To address this issue, we propose a novel architecture named Graph Dimension Attention Network (GDAN), which incorporates a dimension-level attention mechanism to capture fine-grained risk-related characteristics. Furthermore, we explore the interpretability of the GNN-based method in financial scenarios and propose a simple but effective data-centric explainer for GDAN, called GDAN-DistShift. DistShift provides edge-level interpretability by quantifying distribution shifts during the message-passing process. Moreover, we collected a real-world, multi-source Enterprise Credit Assessment Dataset (ECAD) and have made it accessible to the research community since high-quality datasets are lacking in this field. Extensive experiments conducted on ECAD demonstrate the effectiveness of our methods. In addition, we ran GDAN on the well-known datasets SMEsD and DBLP, also with excellent results.
- Abstract(参考訳): 企業クレジットアセスメントは金融リスクを評価する上で重要であり、グラフニューラルネットワーク(GNN)は、相互関係をモデル化する高度な能力を持ち、これらの金融ネットワークをより深く理解するための自然なツールである。
しかし、既存のGNNベースの手法は、しばしば異なる特徴次元の不均一な重要性を見落とし、信用リスクレベルを適切にモデル化する上で不足する、感染リスク集約のためのエンティティレベルの注意機構を主に強調する。
この問題に対処するため,我々はGDAN (Graph Dimension Attention Network) という新しいアーキテクチャを提案する。
さらに、財務シナリオにおけるGNN手法の解釈可能性について検討し、GDAN-DistShiftと呼ばれるGDANのためのシンプルだが効果的なデータ中心説明器を提案する。
DistShiftは、メッセージパッシングプロセス中の分散シフトを定量化することで、エッジレベルの解釈性を提供する。
さらに、我々は、実世界のマルチソースエンタープライズクレジットアセスメントデータセット(ECAD)を収集し、高品質なデータセットがこの分野で欠落しているため、研究コミュニティにアクセスできるようにしました。
ECADを用いた大規模な実験により,本手法の有効性が示された。
さらに、よく知られたSMEsDとDBLPのデータセット上でGDANを実行し、優れた結果を得た。
関連論文リスト
- Applying Hybrid Graph Neural Networks to Strengthen Credit Risk Analysis [4.457653449326353]
本稿では, グラフ畳み込みニューラルネットワーク(GCNN)を用いた信用リスク予測手法を提案する。
提案手法は、従来の信用リスク評価モデルが直面する課題、特に不均衡なデータセットを扱う際の課題に対処する。
この研究は、信用リスク予測の精度を向上させるためのGCNNの可能性を示し、金融機関にとって堅牢なソリューションを提供する。
論文 参考訳(メタデータ) (2024-10-05T20:49:05Z) - Review of Digital Asset Development with Graph Neural Network Unlearning [0.0]
本稿では,デジタル資産管理におけるグラフニューラルネットワーク(GNN)の重要性について検討する。
我々は,GNNアーキテクチャに特化して,革新的なアンラーニング手法を導入する。
不正検出、リスク評価、トークン関係予測、分散ガバナンスなど、さまざまなユースケースにおける適用性を強調した。
論文 参考訳(メタデータ) (2024-09-27T05:31:04Z) - Advanced Financial Fraud Detection Using GNN-CL Model [13.5240775562349]
本稿では,金融不正検出の分野において,革新的なGNN-CLモデルを提案する。
グラフニューラルネットワーク(gnn)、畳み込みニューラルネットワーク(cnn)、長期記憶(LSTM)の利点を組み合わせる。
本稿では,マルチ層パーセプトロン(MLPS)を用いてノードの類似性を推定する。
論文 参考訳(メタデータ) (2024-07-09T03:59:06Z) - Uncertainty in Graph Neural Networks: A Survey [50.63474656037679]
グラフニューラルネットワーク(GNN)は、様々な現実世界のアプリケーションで広く使われている。
しかし、多様な情報源から生じるGNNの予測的不確実性は、不安定で誤った予測につながる可能性がある。
本調査は,不確実性の観点からGNNの概要を概観することを目的としている。
論文 参考訳(メタデータ) (2024-03-11T21:54:52Z) - A Survey of Graph Neural Networks in Real world: Imbalance, Noise,
Privacy and OOD Challenges [75.37448213291668]
本稿では,既存のグラフニューラルネットワーク(GNN)を体系的にレビューする。
まず、既存のGNNが直面している4つの重要な課題を強調し、現実のGNNモデルを探究する道を開く。
論文 参考訳(メタデータ) (2024-03-07T13:10:37Z) - Unsupervised Graph Attention Autoencoder for Attributed Networks using
K-means Loss [0.0]
我々は、属性付きネットワークにおけるコミュニティ検出のための、教師なしのtextbfGraph Attention textbfAutotextbfEncoder に基づく、シンプルで効率的なクラスタリング指向モデルを提案する。
提案モデルは,ネットワークのトポロジと属性情報の両方から表現を十分に学習し,同時に2つの目的,すなわち再構築とコミュニティ発見に対処する。
論文 参考訳(メタデータ) (2023-11-21T20:45:55Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - Heterogeneous Information Network based Default Analysis on Banking
Micro and Small Enterprise Users [18.32345474014549]
バンキングデータのグラフを考察し,その目的のために新しいHIDAMモデルを提案する。
MSEの特徴表現を強化するため,メタパスを通してインタラクティブな情報を抽出し,経路情報を完全に活用する。
実験結果から,HIDAMが現実の銀行データにおいて最先端の競争相手を上回ることが確認された。
論文 参考訳(メタデータ) (2022-04-24T11:26:12Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。