論文の概要: Global atmospheric data assimilation with multi-modal masked autoencoders
- arxiv url: http://arxiv.org/abs/2407.11696v1
- Date: Tue, 16 Jul 2024 13:15:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:52:24.968594
- Title: Global atmospheric data assimilation with multi-modal masked autoencoders
- Title(参考訳): マルチモーダルマスク付きオートエンコーダによる大域的大気データ同化
- Authors: Thomas J. Vandal, Kate Duffy, Daniel McDuff, Yoni Nachmany, Chris Hartshorn,
- Abstract要約: EarthNetはデータ同化のためのマルチモーダル基礎モデルである。
衛星観測のみから、地球規模のギャップに満ちた大気状態を予測することを学ぶ。
大気の3次元温度と湿度の地球規模の0.16度の再分析データセットを生成する。
- 参考スコア(独自算出の注目度): 20.776143147372427
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Global data assimilation enables weather forecasting at all scales and provides valuable data for studying the Earth system. However, the computational demands of physics-based algorithms used in operational systems limits the volume and diversity of observations that are assimilated. Here, we present "EarthNet", a multi-modal foundation model for data assimilation that learns to predict a global gap-filled atmospheric state solely from satellite observations. EarthNet is trained as a masked autoencoder that ingests a 12 hour sequence of observations and learns to fill missing data from other sensors. We show that EarthNet performs a form of data assimilation producing a global 0.16 degree reanalysis dataset of 3D atmospheric temperature and humidity at a fraction of the time compared to operational systems. It is shown that the resulting reanalysis dataset reproduces climatology by evaluating a 1 hour forecast background state against observations. We also show that our 3D humidity predictions outperform MERRA-2 and ERA5 reanalyses by 10% to 60% between the middle troposphere and lower stratosphere (5 to 20 km altitude) and our 3D temperature and humidity are statistically equivalent to the Microwave integrated Retrieval System (MiRS) observations at nearly every level of the atmosphere. Our results indicate significant promise in using EarthNet for high-frequency data assimilation and global weather forecasting.
- Abstract(参考訳): 地球規模のデータ同化は、あらゆる規模の天気予報を可能にし、地球系を研究する上で貴重なデータを提供する。
しかし、運用システムで使用される物理ベースのアルゴリズムの計算要求は、同化される観測の量と多様性を制限する。
ここでは,衛星観測のみから,大域的なギャップに満たされた大気状態を予測することを学習するデータ同化のためのマルチモーダル基礎モデルである"EarthNet"を提案する。
EarthNetは、マスク付きオートエンコーダとして訓練され、12時間の観察を取り込み、他のセンサーから欠落したデータを埋めることを学ぶ。
我々は,地球ネットが3次元大気温度と湿度のグローバルな0.16度再分析データセットを,運用システムと比較してほんの少しの時間で生成するデータ同化の形式を示す。
得られた再分析データセットは、観測結果に対して1時間の予測背景状態を評価することにより気候学を再現する。
また、MERRA-2とERA5の3次元湿度予測は、中対流圏と下層圏(高度5~20km)の間で10%から60%の精度で再解析し、我々の3次元温度と湿度は、大気のほぼすべてのレベルにおけるマイクロ波統合探査システム(MiRS)観測と統計的に等価であることを示した。
以上の結果から,地球ネットを高周波データ同化や地球規模の天気予報に利用することの有望さが示唆された。
関連論文リスト
- Deep Learning for Weather Forecasting: A CNN-LSTM Hybrid Model for Predicting Historical Temperature Data [7.559331742876793]
本研究では,畳み込みニューラルネットワーク(CNN)とLong Short-Term Memory(LSTM)を併用したハイブリッドモデルを提案する。
CNNは空間的特徴抽出に利用され、LSTMは時間的依存を処理し、予測精度と安定性が大幅に向上する。
論文 参考訳(メタデータ) (2024-10-19T03:38:53Z) - Stratospheric aerosol source inversion: Noise, variability, and uncertainty quantification [0.0]
本稿では,ベイズ近似誤差を用いた成層圏エアロゾル源インバージョンのためのフレームワークを提案する。
我々はE3SM(Energy Exascale Earth System Model)を用いた特別設計地球モデルシミュレーションを活用する。
データ生成、データ処理、次元削減、演算子学習、ベイズ反転のための包括的なフレームワークについて述べる。
論文 参考訳(メタデータ) (2024-09-10T20:12:36Z) - FuXi Weather: An end-to-end machine learning weather data assimilation and forecasting system [13.824417759272785]
本稿では,エンド・ツー・エンドの機械学習による天気予報システムであるFuXi Weatherを紹介する。
FuXi Weatherは、様々な情報源の情報を統合するために、特別なデータ前処理とマルチモーダルデータ融合技術を採用している。
安定で正確な10日間の世界的な天気予報を、空間解像度0.25textで独自に生成する。
論文 参考訳(メタデータ) (2024-08-10T07:42:01Z) - Generating Fine-Grained Causality in Climate Time Series Data for Forecasting and Anomaly Detection [67.40407388422514]
我々は、TBN Granger Causalityという概念的微粒因果モデルを設計する。
次に, TBN Granger Causality を生成的に発見する TacSas という, エンドツーエンドの深部生成モデルを提案する。
気候予報のための気候指標ERA5と、極度気象警報のためのNOAAの極端気象基準でTacSasを試験する。
論文 参考訳(メタデータ) (2024-08-08T06:47:21Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - DiffDA: a Diffusion Model for Weather-scale Data Assimilation [19.336483240566142]
本研究では,予測状態とスパース観測を用いて大気変数を同化可能な拡散モデルとしてDiffDAを提案する。
天気予報モデルと天気予報専用拡散モデルとの類似性を認識し,事前学習したGraphCastニューラルネットワークを拡散モデルのバックボーンとして適用する。
論文 参考訳(メタデータ) (2024-01-11T14:11:12Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaXは気象と気候科学のディープラーニングモデルである。
気候データセットの自己教師型学習目標で事前トレーニングすることができる。
気候や気候の様々な問題に対処するために、微調整が可能である。
論文 参考訳(メタデータ) (2023-01-24T23:19:01Z) - Pangu-Weather: A 3D High-Resolution Model for Fast and Accurate Global
Weather Forecast [91.9372563527801]
我々は,世界天気予報を迅速かつ高精度に予測するためのディープラーニングベースのシステムであるPangu-Weatherを紹介する。
初めてAIベースの手法が、最先端の数値天気予報法(NWP)を精度で上回った。
Pangu-Weatherは、極端な天気予報や大規模なアンサンブル予測など、幅広い下流予測シナリオをサポートしている。
論文 参考訳(メタデータ) (2022-11-03T17:19:43Z) - Forecasting Global Weather with Graph Neural Networks [0.0]
本稿では,グラフニューラルネットワークを用いた気象予報のためのデータ駆動型手法を提案する。
システムは現在の3D大気状態を6時間前に進めることを学び、複数のステップをチェーンして、数日後の未来に進む巧妙な予測を生成する。
論文 参考訳(メタデータ) (2022-02-15T17:02:07Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。