Cycle Contrastive Adversarial Learning for Unsupervised image Deraining
- URL: http://arxiv.org/abs/2407.11750v1
- Date: Tue, 16 Jul 2024 14:16:42 GMT
- Title: Cycle Contrastive Adversarial Learning for Unsupervised image Deraining
- Authors: Chen Zhao, Weiling Cai, ChengWei Hu, Zheng Yuan,
- Abstract summary: We propose a novel cycle contrastive generative adversarial network for unsupervised SID, called CCLGAN.
This framework combines cycle contrastive learning (CCL) and location contrastive learning (LCL).
CCLGAN shows superior performance, as extensive experiments demonstrate the benefits of CCLGAN and the effectiveness of its components.
- Score: 7.932659600218345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To tackle the difficulties in fitting paired real-world data for single image deraining (SID), recent unsupervised methods have achieved notable success. However, these methods often struggle to generate high-quality, rain-free images due to a lack of attention to semantic representation and image content, resulting in ineffective separation of content from the rain layer. In this paper, we propose a novel cycle contrastive generative adversarial network for unsupervised SID, called CCLGAN. This framework combines cycle contrastive learning (CCL) and location contrastive learning (LCL). CCL improves image reconstruction and rain-layer removal by bringing similar features closer and pushing dissimilar features apart in both semantic and discriminative spaces. At the same time, LCL preserves content information by constraining mutual information at the same location across different exemplars. CCLGAN shows superior performance, as extensive experiments demonstrate the benefits of CCLGAN and the effectiveness of its components.
Related papers
- Supervised Adversarial Contrastive Learning for Emotion Recognition in
Conversations [24.542445315345464]
We propose a framework for learning class-spread structured representations in a supervised manner.
It can effectively utilize label-level feature consistency and retain fine-grained intra-class features.
Under the framework with CAT, we develop a sequence-based SACL-LSTM to learn label-consistent and context-robust features.
arXiv Detail & Related papers (2023-06-02T12:52:38Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
Rain streaks significantly decrease the visibility of captured images.
Existing deep learning-based image deraining methods employ manually crafted networks and learn a straightforward projection from rainy images to clear images.
We propose a contrastive learning-based image deraining method that investigates the correlation between rainy and clear images.
arXiv Detail & Related papers (2023-05-29T13:51:41Z) - Restoring Vision in Hazy Weather with Hierarchical Contrastive Learning [53.85892601302974]
We propose an effective image dehazing method named Hierarchical Contrastive Dehazing (HCD)
HCD consists of a hierarchical dehazing network (HDN) and a novel hierarchical contrastive loss (HCL)
arXiv Detail & Related papers (2022-12-22T03:57:06Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Unsupervised Restoration of Weather-affected Images using Deep Gaussian
Process-based CycleGAN [92.15895515035795]
We describe an approach for supervising deep networks that are based on CycleGAN.
We introduce new losses for training CycleGAN that lead to more effective training, resulting in high-quality reconstructions.
We demonstrate that the proposed method can be effectively applied to different restoration tasks like de-raining, de-hazing and de-snowing.
arXiv Detail & Related papers (2022-04-23T01:30:47Z) - Semantically Contrastive Learning for Low-light Image Enhancement [48.71522073014808]
Low-light image enhancement (LLE) remains challenging due to the unfavorable prevailing low-contrast and weak-visibility problems of single RGB images.
We propose an effective semantically contrastive learning paradigm for LLE (namely SCL-LLE)
Our method surpasses the state-of-the-arts LLE models over six independent cross-scenes datasets.
arXiv Detail & Related papers (2021-12-13T07:08:33Z) - Unpaired Adversarial Learning for Single Image Deraining with Rain-Space
Contrastive Constraints [61.40893559933964]
We develop an effective unpaired SID method which explores mutual properties of the unpaired exemplars by a contrastive learning manner in a GAN framework, named as CDR-GAN.
Our method performs favorably against existing unpaired deraining approaches on both synthetic and real-world datasets, even outperforms several fully-supervised or semi-supervised models.
arXiv Detail & Related papers (2021-09-07T10:00:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.