論文の概要: Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation
- arxiv url: http://arxiv.org/abs/2407.11820v1
- Date: Tue, 16 Jul 2024 15:08:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:23:08.627483
- Title: Stepping Stones: A Progressive Training Strategy for Audio-Visual Semantic Segmentation
- Title(参考訳): Stepping Stones: Audio-Visual Semantic Segmentationのためのプログレッシブトレーニング戦略
- Authors: Juncheng Ma, Peiwen Sun, Yaoting Wang, Di Hu,
- Abstract要約: AVSS (Audio-Visual Semantic) は映像中の音源の画素レベルのローカライゼーションを実現することを目的としており、AVSS (Audio-Visual Semantic) は音声視覚シーンの意味的理解を追求している。
従来の方法は、エンドツーエンドのトレーニングにおいて、このマッシュアップを扱うのに苦労しており、学習とサブ最適化が不十分である。
textitStepping Stonesと呼ばれる2段階のトレーニング戦略を提案し、AVSSタスクを2つの単純なサブタスクに分解する。
- 参考スコア(独自算出の注目度): 7.124066540020968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio-Visual Segmentation (AVS) aims to achieve pixel-level localization of sound sources in videos, while Audio-Visual Semantic Segmentation (AVSS), as an extension of AVS, further pursues semantic understanding of audio-visual scenes. However, since the AVSS task requires the establishment of audio-visual correspondence and semantic understanding simultaneously, we observe that previous methods have struggled to handle this mashup of objectives in end-to-end training, resulting in insufficient learning and sub-optimization. Therefore, we propose a two-stage training strategy called \textit{Stepping Stones}, which decomposes the AVSS task into two simple subtasks from localization to semantic understanding, which are fully optimized in each stage to achieve step-by-step global optimization. This training strategy has also proved its generalization and effectiveness on existing methods. To further improve the performance of AVS tasks, we propose a novel framework Adaptive Audio Visual Segmentation, in which we incorporate an adaptive audio query generator and integrate masked attention into the transformer decoder, facilitating the adaptive fusion of visual and audio features. Extensive experiments demonstrate that our methods achieve state-of-the-art results on all three AVS benchmarks. The project homepage can be accessed at https://gewu-lab.github.io/stepping_stones/.
- Abstract(参考訳): オーディオ・ビジュアル・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セメンテーション(AVSS)は、映像中の音源のピクセルレベルのローカライゼーションを実現することを目的としており、AVSの拡張として、音声・視覚シーンのセマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティック・セマンティクス(AVSS)は、さらに音声・視覚シーンのセマンティック・理解を追求している。
しかし、AVSSタスクは音声と視覚の対応と意味理解を同時に行う必要があるため、従来の手法では、エンドツーエンドのトレーニングにおいて、このマッシュアップを扱うのに苦労しており、学習とサブ最適化が不十分であったことが観察された。
そこで本研究では,AVSSタスクを局所化から意味理解までの2つの単純なサブタスクに分解し,各ステージで完全に最適化し,ステップバイステップのグローバル最適化を実現するための2段階のトレーニング戦略である「textit{Stepping Stones}」を提案する。
このトレーニング戦略は既存の手法の一般化と有効性も証明している。
AVSタスクの性能をさらに向上するために,適応型音声クエリジェネレータを組み込み,マスキングされた注意をトランスフォーマーデコーダに統合し,視覚的特徴と音声的特徴の適応的融合を容易にする,新しいフレームワークであるAdaptive Audio Visual Segmentationを提案する。
3つのAVSベンチマークのすべてにおいて,本手法が最先端の成果を達成できることを実証した。
プロジェクトのホームページはhttps://gewu-lab.github.io/stepping_stones/.comからアクセスできる。
関連論文リスト
- Label-anticipated Event Disentanglement for Audio-Visual Video Parsing [61.08434062821899]
我々は新しいデコードパラダイムであるアンダーライン・サンダーライン・エンダーライン・アンダーライン・インダーライン・プロジェクション(LEAP)を導入する。
LEAPは、音声/視覚セグメントの符号化された潜在機能を意味的に独立したラベル埋め込みに反復的に投影する。
LEAPパラダイムを促進するために,新しい音声・視覚的類似性損失関数を含むセマンティック・アウェア・最適化戦略を提案する。
論文 参考訳(メタデータ) (2024-07-11T01:57:08Z) - CPM: Class-conditional Prompting Machine for Audio-visual Segmentation [17.477225065057993]
CPM(Class-conditional Prompting Machine)は,クラス非依存クエリとクラス条件クエリを組み合わせた学習戦略により,双方向マッチングを改善した。
我々はAVSベンチマーク実験を行い、その手法がSOTA(State-of-the-art)セグメンテーションの精度を実現することを示す。
論文 参考訳(メタデータ) (2024-07-07T13:20:21Z) - Unsupervised Audio-Visual Segmentation with Modality Alignment [42.613786372067814]
Audio-Visualは、特定の音を生成する視覚シーンのオブジェクトをピクセルレベルで識別することを目的としている。
現在のAVSメソッドは、コストのかかるマスクとオーディオのペアの細かいアノテーションに依存しているため、スケーラビリティには実用的ではない。
そこで本研究では,モダリティ対応アライメント(MoCA)と呼ばれる教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2024-03-21T07:56:09Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
双方向ブリッジを用いた双方向オーディオ・ビジュアルデコーダ(BAVD)を提案する。
この相互作用はモダリティの不均衡を狭め、統合されたオーディオ視覚表現のより効果的な学習を促進する。
また,BAVDの微粒化誘導として,音声・視覚的フレームワイド同期のための戦略を提案する。
論文 参考訳(メタデータ) (2024-02-04T03:02:35Z) - Leveraging Foundation models for Unsupervised Audio-Visual Segmentation [49.94366155560371]
AVS (Audio-Visual) は、可聴物体をピクセルレベルの視覚シーンで正確に概説することを目的としている。
既存のAVS手法では、教師付き学習方式でオーディオマスク対の細かいアノテーションを必要とする。
タスク固有のデータアノテーションやモデルトレーニングを必要とせず、教師なしの音声-視覚的セグメンテーションを導入する。
論文 参考訳(メタデータ) (2023-09-13T05:05:47Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
本稿では,事前学習および微調整訓練の枠組みの下で,音声視覚音声認識(AVSR)を改善するための2つの新しい手法を提案する。
まず, マンダリンにおける口唇形状と音節レベルサブワード単位の相関について検討し, 口唇形状から良好なフレームレベル音節境界を確立する。
次に,音声誘導型クロスモーダルフュージョンエンコーダ(CMFE)ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-08-14T08:19:24Z) - Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation [18.001730255429347]
オーディオ視覚セグメント化(AVS)は、音声視覚キューに基づいて、正確に音を分割する作業である。
我々は,難易度と比較的偏りのない高画質な視覚的セグメンテーション・ベンチマークを構築するための新たなコスト効率戦略を提案する。
既存のAVSデータセットおよび我々の新しいベンチマークで行った実験により、我々の手法は最先端(SOTA)セグメンテーションの精度を達成できた。
論文 参考訳(メタデータ) (2023-04-06T09:54:06Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
VATLM (Visual-Audio-Text Language Model) を用いたクロスモーダル表現学習フレームワークを提案する。
提案したVATLMは、モダリティに依存しない情報をモデル化するために、統一されたバックボーンネットワークを使用する。
これら3つのモダリティを1つの共有セマンティック空間に統合するために、VATLMは統一トークンのマスク付き予測タスクで最適化される。
論文 参考訳(メタデータ) (2022-11-21T09:10:10Z) - Audio-Visual Segmentation [47.10873917119006]
本稿では,AVS(Audio-visual segmentation)と呼ばれる新しい課題について検討する。
ゴールは、画像フレームの時点で音を生成するオブジェクトのピクセルレベルのマップを出力することである。
本研究では,可聴ビデオにおける音声オブジェクトに対する画素単位のアノテーションを提供するAVSBench(Audio-visual segmentation benchmark)を構築した。
論文 参考訳(メタデータ) (2022-07-11T17:50:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。