論文の概要: Novel Hybrid Integrated Pix2Pix and WGAN Model with Gradient Penalty for Binary Images Denoising
- arxiv url: http://arxiv.org/abs/2407.11865v1
- Date: Tue, 16 Jul 2024 15:50:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 14:03:36.678694
- Title: Novel Hybrid Integrated Pix2Pix and WGAN Model with Gradient Penalty for Binary Images Denoising
- Title(参考訳): バイナリ画像認識のためのグラディエントペナルティ付きハイブリッドPix2PixとWGANモデル
- Authors: Luca Tirel, Ali Mohamed Ali, Hashim A. Hashim,
- Abstract要約: 本稿では,GAN(Generative Adversarial Networks)の利点を活用した画像復号化手法を提案する。
Pix2PixモデルとWasserstein GAN(WGAN)とGradient Penalty(WGAN-GP)の要素を組み合わせたモデルを提案する。
- 参考スコア(独自算出の注目度): 1.8434042562191815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a novel approach to image denoising that leverages the advantages of Generative Adversarial Networks (GANs). Specifically, we propose a model that combines elements of the Pix2Pix model and the Wasserstein GAN (WGAN) with Gradient Penalty (WGAN-GP). This hybrid framework seeks to capitalize on the denoising capabilities of conditional GANs, as demonstrated in the Pix2Pix model, while mitigating the need for an exhaustive search for optimal hyperparameters that could potentially ruin the stability of the learning process. In the proposed method, the GAN's generator is employed to produce denoised images, harnessing the power of a conditional GAN for noise reduction. Simultaneously, the implementation of the Lipschitz continuity constraint during updates, as featured in WGAN-GP, aids in reducing susceptibility to mode collapse. This innovative design allows the proposed model to benefit from the strong points of both Pix2Pix and WGAN-GP, generating superior denoising results while ensuring training stability. Drawing on previous work on image-to-image translation and GAN stabilization techniques, the proposed research highlights the potential of GANs as a general-purpose solution for denoising. The paper details the development and testing of this model, showcasing its effectiveness through numerical experiments. The dataset was created by adding synthetic noise to clean images. Numerical results based on real-world dataset validation underscore the efficacy of this approach in image-denoising tasks, exhibiting significant enhancements over traditional techniques. Notably, the proposed model demonstrates strong generalization capabilities, performing effectively even when trained with synthetic noise.
- Abstract(参考訳): 本稿では,GAN(Generative Adversarial Networks)の利点を活用した画像復号化手法を提案する。
具体的には、Pix2PixモデルとWasserstein GAN(WGAN)とGradient Penalty(WGAN-GP)の要素を組み合わせるモデルを提案する。
このハイブリッドフレームワークは、Pix2Pixモデルで示されているように、条件付きGANの復調能力を活かし、学習プロセスの安定性を損なう可能性のある最適なハイパーパラメータの徹底的な探索の必要性を軽減しようとしている。
提案手法では, ノイズ低減のための条件付きGANのパワーを生かし, 分解画像の生成にGANのジェネレータを用いる。
同時に、更新中のリプシッツ連続性制約の実装は、WGAN-GPで特徴付けられるように、モード崩壊に対する感受性の低下を助長する。
この革新的な設計により、提案モデルはPix2PixとWGAN-GPの双方の強みの恩恵を受けることができ、訓練安定性を確保しつつ優れたデノナイジング結果が得られる。
画像から画像への変換とGAN安定化技術に関するこれまでの研究に基づいて,GANの汎用的解法としての可能性を強調した。
本稿では,本モデルの開発と試験について詳述し,数値実験による有効性を示す。
データセットは、クリーンな画像に合成ノイズを加えることで作成されました。
実世界のデータセット検証に基づく数値的な結果から、画像デノベーションタスクにおけるこのアプローチの有効性が評価され、従来の手法よりも大幅に向上した。
特に,提案モデルでは,合成雑音を訓練しても有効に機能する,強力な一般化能力を示す。
関連論文リスト
- Enhancing Low Dose Computed Tomography Images Using Consistency Training Techniques [7.694256285730863]
本稿では,雑音レベル調整の柔軟性を提供するベータノイズ分布について紹介する。
HN-iCT(High Noise Improved Consistency Training)は、教師付き方式で訓練される。
以上の結果より,HN-iCTを用いた非条件画像生成はNFE=1。
論文 参考訳(メタデータ) (2024-11-19T02:48:36Z) - NM-FlowGAN: Modeling sRGB Noise without Paired Images using a Hybrid Approach of Normalizing Flows and GAN [9.81778202920426]
NM-FlowGANは、GANと正規化フローの両方の長所を利用するハイブリッドアプローチである。
本手法は, カメラタイプやISO設定などの手軽に取得可能なパラメータなど, クリーンな画像とノイズ特性に影響を与える要因を用いてノイズを合成する。
我々のNM-FlowGANは、sRGBノイズ合成タスクにおいて、他のベースラインよりも優れています。
論文 参考訳(メタデータ) (2023-12-15T09:09:25Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
本稿では,従来のプラグアンドプレイ方式を拡散サンプリングフレームワークに統合したDiffPIRを提案する。
DiffPIRは、差別的なガウスのデノイザーに依存するプラグアンドプレイIR法と比較して、拡散モデルの生成能力を継承することが期待されている。
論文 参考訳(メタデータ) (2023-05-15T20:24:38Z) - Real-World Denoising via Diffusion Model [14.722529440511446]
実世界のイメージデノイングは、自然の環境で撮影されたノイズの多い画像からクリーンなイメージを復元することを目的としている。
拡散モデルは画像生成の分野で非常に有望な結果を得た。
本稿では,実世界の画像のデノナイズに使用可能な,新しい一般デノナイズ拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-05-08T04:48:03Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Practical Blind Image Denoising via Swin-Conv-UNet and Data Synthesis [148.16279746287452]
本研究では,残差畳み込み層の局所モデリング能力とスウィントランスブロックの非局所モデリング能力を組み込むスウィンコンブブロックを提案する。
トレーニングデータ合成のために,異なる種類のノイズを考慮した実用的なノイズ劣化モデルの設計を行う。
AGWN除去と実画像復号化の実験は、新しいネットワークアーキテクチャ設計が最先端の性能を達成することを実証している。
論文 参考訳(メタデータ) (2022-03-24T18:11:31Z) - Designing a Practical Degradation Model for Deep Blind Image
Super-Resolution [134.9023380383406]
単一画像スーパーレゾリューション (sisr) 法は, 推定劣化モデルが実画像から逸脱した場合はうまく動作しない。
本稿では, ランダムにシャッフルされたブラー, ダウンサンプリング, ノイズ劣化からなる, より複雑で実用的な劣化モデルを提案する。
論文 参考訳(メタデータ) (2021-03-25T17:40:53Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
実世界の画像ノイズ除去は、コンピュータビジョンにおける長年の課題である。
本稿では,ノイズ除去およびノイズ発生タスクに対処する新しい統合フレームワークを提案する。
本手法はクリーンノイズ画像対の連成分布を学習する。
論文 参考訳(メタデータ) (2020-07-12T09:16:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。