Learning Confidence Bounds for Classification with Imbalanced Data
- URL: http://arxiv.org/abs/2407.11878v2
- Date: Tue, 1 Oct 2024 13:35:15 GMT
- Title: Learning Confidence Bounds for Classification with Imbalanced Data
- Authors: Matt Clifford, Jonathan Erskine, Alexander Hepburn, Raúl Santos-Rodríguez, Dario Garcia-Garcia,
- Abstract summary: We propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions.
Our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes.
- Score: 42.690254618937196
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Class imbalance poses a significant challenge in classification tasks, where traditional approaches often lead to biased models and unreliable predictions. Undersampling and oversampling techniques have been commonly employed to address this issue, yet they suffer from inherent limitations stemming from their simplistic approach such as loss of information and additional biases respectively. In this paper, we propose a novel framework that leverages learning theory and concentration inequalities to overcome the shortcomings of traditional solutions. We focus on understanding the uncertainty in a class-dependent manner, as captured by confidence bounds that we directly embed into the learning process. By incorporating class-dependent estimates, our method can effectively adapt to the varying degrees of imbalance across different classes, resulting in more robust and reliable classification outcomes. We empirically show how our framework provides a promising direction for handling imbalanced data in classification tasks, offering practitioners a valuable tool for building more accurate and trustworthy models.
Related papers
- Towards the Mitigation of Confirmation Bias in Semi-supervised Learning: a Debiased Training Perspective [6.164100243945264]
Semi-supervised learning (SSL) commonly exhibits confirmation bias, where models disproportionately favor certain classes.
We introduce TaMatch, a unified framework for debiased training in SSL.
We show that TaMatch significantly outperforms existing state-of-the-art methods across a range of challenging image classification tasks.
arXiv Detail & Related papers (2024-09-26T21:50:30Z) - DAFA: Distance-Aware Fair Adversarial Training [34.94780532071229]
Under adversarial attacks, the majority of the model's predictions for samples from the worst class are biased towards classes similar to the worst class.
We introduce the Distance-Aware Fair Adversarial training (DAFA) methodology, which addresses robust fairness by taking into account the similarities between classes.
arXiv Detail & Related papers (2024-01-23T07:15:47Z) - Binary Classification with Confidence Difference [100.08818204756093]
This paper delves into a novel weakly supervised binary classification problem called confidence-difference (ConfDiff) classification.
We propose a risk-consistent approach to tackle this problem and show that the estimation error bound the optimal convergence rate.
We also introduce a risk correction approach to mitigate overfitting problems, whose consistency and convergence rate are also proven.
arXiv Detail & Related papers (2023-10-09T11:44:50Z) - Calibration-Aware Bayesian Learning [37.82259435084825]
This paper proposes an integrated framework, referred to as calibration-aware Bayesian neural networks (CA-BNNs)
It applies both data-dependent or data-independent regularizers while optimizing over a variational distribution as in Bayesian learning.
Numerical results validate the advantages of the proposed approach in terms of expected calibration error (ECE) and reliability diagrams.
arXiv Detail & Related papers (2023-05-12T14:19:15Z) - SoftMatch: Addressing the Quantity-Quality Trade-off in Semi-supervised
Learning [101.86916775218403]
This paper revisits the popular pseudo-labeling methods via a unified sample weighting formulation.
We propose SoftMatch to overcome the trade-off by maintaining both high quantity and high quality of pseudo-labels during training.
In experiments, SoftMatch shows substantial improvements across a wide variety of benchmarks, including image, text, and imbalanced classification.
arXiv Detail & Related papers (2023-01-26T03:53:25Z) - Fair Inference for Discrete Latent Variable Models [12.558187319452657]
Machine learning models, trained on data without due care, often exhibit unfair and discriminatory behavior against certain populations.
We develop a fair variational inference technique for the discrete latent variables, which is accomplished by including a fairness penalty on the variational distribution.
To demonstrate the generality of our approach and its potential for real-world impact, we then develop a special-purpose graphical model for criminal justice risk assessments.
arXiv Detail & Related papers (2022-09-15T04:54:21Z) - Fairness-aware Class Imbalanced Learning [57.45784950421179]
We evaluate long-tail learning methods for tweet sentiment and occupation classification.
We extend a margin-loss based approach with methods to enforce fairness.
arXiv Detail & Related papers (2021-09-21T22:16:30Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.