Deep Learning without Global Optimization by Random Fourier Neural Networks
- URL: http://arxiv.org/abs/2407.11894v1
- Date: Tue, 16 Jul 2024 16:23:40 GMT
- Title: Deep Learning without Global Optimization by Random Fourier Neural Networks
- Authors: Owen Davis, Gianluca Geraci, Mohammad Motamed,
- Abstract summary: We introduce a new training algorithm for variety of deep neural networks that utilize random complex exponential activation functions.
Our approach employs a Markov Chain Monte Carlo sampling procedure to iteratively train network layers.
It consistently attains the theoretical approximation rate for residual networks with complex exponential activation functions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a new training algorithm for variety of deep neural networks that utilize random complex exponential activation functions. Our approach employs a Markov Chain Monte Carlo sampling procedure to iteratively train network layers, avoiding global and gradient-based optimization while maintaining error control. It consistently attains the theoretical approximation rate for residual networks with complex exponential activation functions, determined by network complexity. Additionally, it enables efficient learning of multiscale and high-frequency features, producing interpretable parameter distributions. Despite using sinusoidal basis functions, we do not observe Gibbs phenomena in approximating discontinuous target functions.
Related papers
- SGD method for entropy error function with smoothing l0 regularization for neural networks [3.108634881604788]
entropy error function has been widely used in neural networks.
We propose a novel entropy function with smoothing l0 regularization for feed-forward neural networks.
Our work is novel as it enables neural networks to learn effectively, producing more accurate predictions.
arXiv Detail & Related papers (2024-05-28T19:54:26Z) - Approximation Error and Complexity Bounds for ReLU Networks on Low-Regular Function Spaces [0.0]
We consider the approximation of a large class of bounded functions, with minimal regularity assumptions, by ReLU neural networks.
We show that the approximation error can be bounded from above by a quantity proportional to the uniform norm of the target function.
arXiv Detail & Related papers (2024-05-10T14:31:58Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Simple initialization and parametrization of sinusoidal networks via
their kernel bandwidth [92.25666446274188]
sinusoidal neural networks with activations have been proposed as an alternative to networks with traditional activation functions.
We first propose a simplified version of such sinusoidal neural networks, which allows both for easier practical implementation and simpler theoretical analysis.
We then analyze the behavior of these networks from the neural tangent kernel perspective and demonstrate that their kernel approximates a low-pass filter with an adjustable bandwidth.
arXiv Detail & Related papers (2022-11-26T07:41:48Z) - Overcoming the Spectral Bias of Neural Value Approximation [17.546011419043644]
Value approximation using deep neural networks is often the primary module that provides learning signals to the rest of the algorithm.
Recent works in neural kernel regression suggest the presence of a spectral bias, where fitting high-frequency components of the value function requires exponentially more gradient update steps than the low-frequency ones.
We re-examine off-policy reinforcement learning through the lens of kernel regression and propose to overcome such bias via a composite neural kernel.
arXiv Detail & Related papers (2022-06-09T17:59:57Z) - Training Certifiably Robust Neural Networks with Efficient Local
Lipschitz Bounds [99.23098204458336]
Certified robustness is a desirable property for deep neural networks in safety-critical applications.
We show that our method consistently outperforms state-of-the-art methods on MNIST and TinyNet datasets.
arXiv Detail & Related papers (2021-11-02T06:44:10Z) - Non-Gradient Manifold Neural Network [79.44066256794187]
Deep neural network (DNN) generally takes thousands of iterations to optimize via gradient descent.
We propose a novel manifold neural network based on non-gradient optimization.
arXiv Detail & Related papers (2021-06-15T06:39:13Z) - Learning Frequency Domain Approximation for Binary Neural Networks [68.79904499480025]
We propose to estimate the gradient of sign function in the Fourier frequency domain using the combination of sine functions for training BNNs.
The experiments on several benchmark datasets and neural architectures illustrate that the binary network learned using our method achieves the state-of-the-art accuracy.
arXiv Detail & Related papers (2021-03-01T08:25:26Z) - Random Vector Functional Link Networks for Function Approximation on Manifolds [8.535815777849786]
We show that single layer neural-networks with random input-to-hidden layer weights and biases have seen success in practice.
We further adapt this randomized neural network architecture to approximate functions on smooth, compact submanifolds of Euclidean space.
arXiv Detail & Related papers (2020-07-30T23:50:44Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.