Probing transfer learning with a model of synthetic correlated datasets
- URL: http://arxiv.org/abs/2106.05418v1
- Date: Wed, 9 Jun 2021 22:15:41 GMT
- Title: Probing transfer learning with a model of synthetic correlated datasets
- Authors: Federica Gerace, Luca Saglietti, Stefano Sarao Mannelli, Andrew Saxe,
Lenka Zdeborov\'a
- Abstract summary: Transfer learning can significantly improve the sample efficiency of neural networks.
We re-think a solvable model of synthetic data as a framework for modeling correlation between data-sets.
We show that our model can capture a range of salient features of transfer learning with real data.
- Score: 11.53207294639557
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transfer learning can significantly improve the sample efficiency of neural
networks, by exploiting the relatedness between a data-scarce target task and a
data-abundant source task. Despite years of successful applications, transfer
learning practice often relies on ad-hoc solutions, while theoretical
understanding of these procedures is still limited. In the present work, we
re-think a solvable model of synthetic data as a framework for modeling
correlation between data-sets. This setup allows for an analytic
characterization of the generalization performance obtained when transferring
the learned feature map from the source to the target task. Focusing on the
problem of training two-layer networks in a binary classification setting, we
show that our model can capture a range of salient features of transfer
learning with real data. Moreover, by exploiting parametric control over the
correlation between the two data-sets, we systematically investigate under
which conditions the transfer of features is beneficial for generalization.
Related papers
- Features are fate: a theory of transfer learning in high-dimensional regression [23.840251319669907]
We show that when the target task is well represented by the feature space of the pre-trained model, transfer learning outperforms training from scratch.
For this model, we establish rigorously that when the feature space overlap between the source and target tasks is sufficiently strong, both linear transfer and fine-tuning improve performance.
arXiv Detail & Related papers (2024-10-10T17:58:26Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - Optimal transfer protocol by incremental layer defrosting [66.76153955485584]
Transfer learning is a powerful tool enabling model training with limited amounts of data.
The simplest transfer learning protocol is based on freezing" the feature-extractor layers of a network pre-trained on a data-rich source task.
We show that this protocol is often sub-optimal and the largest performance gain may be achieved when smaller portions of the pre-trained network are kept frozen.
arXiv Detail & Related papers (2023-03-02T17:32:11Z) - Towards Estimating Transferability using Hard Subsets [25.86053764521497]
We propose HASTE, a new strategy to estimate the transferability of a source model to a particular target task using only a harder subset of target data.
We show that HASTE can be used with any existing transferability metric to improve their reliability.
Our experimental results across multiple source model architectures, target datasets, and transfer learning tasks show that HASTE modified metrics are consistently better or on par with the state of the art transferability metrics.
arXiv Detail & Related papers (2023-01-17T14:50:18Z) - An Exploration of Data Efficiency in Intra-Dataset Task Transfer for
Dialog Understanding [65.75873687351553]
This study explores the effects of varying quantities of target task training data on sequential transfer learning in the dialog domain.
Unintuitively, our data shows that often target task training data size has minimal effect on how sequential transfer learning performs compared to the same model without transfer learning.
arXiv Detail & Related papers (2022-10-21T04:36:46Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
We propose a novel transfer learning algorithm, introducing the idea of Target-awareness REpresentation Disentanglement (TRED)
TRED disentangles the relevant knowledge with respect to the target task from the original source model and used as a regularizer during fine-tuning the target model.
Experiments on various real world datasets show that our method stably improves the standard fine-tuning by more than 2% in average.
arXiv Detail & Related papers (2020-10-16T17:45:08Z) - Minimax Lower Bounds for Transfer Learning with Linear and One-hidden
Layer Neural Networks [27.44348371795822]
We develop a statistical minimax framework to characterize the limits of transfer learning.
We derive a lower-bound for the target generalization error achievable by any algorithm as a function of the number of labeled source and target data.
arXiv Detail & Related papers (2020-06-16T22:49:26Z) - Task-Feature Collaborative Learning with Application to Personalized
Attribute Prediction [166.87111665908333]
We propose a novel multi-task learning method called Task-Feature Collaborative Learning (TFCL)
Specifically, we first propose a base model with a heterogeneous block-diagonal structure regularizer to leverage the collaborative grouping of features and tasks.
As a practical extension, we extend the base model by allowing overlapping features and differentiating the hard tasks.
arXiv Detail & Related papers (2020-04-29T02:32:04Z) - The Utility of Feature Reuse: Transfer Learning in Data-Starved Regimes [6.419457653976053]
We describe a transfer learning use case for a domain with a data-starved regime.
We evaluate the effectiveness of convolutional feature extraction and fine-tuning.
We conclude that transfer learning enhances the performance of CNN architectures in data-starved regimes.
arXiv Detail & Related papers (2020-02-29T18:48:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.