論文の概要: VCEval: Rethinking What is a Good Educational Video and How to Automatically Evaluate It
- arxiv url: http://arxiv.org/abs/2407.12005v1
- Date: Sat, 15 Jun 2024 13:18:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:30:12.146047
- Title: VCEval: Rethinking What is a Good Educational Video and How to Automatically Evaluate It
- Title(参考訳): VCEval: 良い教育ビデオとそれを自動的に評価する方法を再考する
- Authors: Xiaoxuan Zhu, Zhouhong Gu, Sihang Jiang, Zhixu Li, Hongwei Feng, Yanghua Xiao,
- Abstract要約: 本稿では,映像コンテンツの品質を自動評価する作業に焦点をあてる。
これらの原則に基づいて,3つの評価原則を提案し,新しい評価フレームワークであるtextitVCEval を設計する。
本手法は,コンテンツ品質の異なるビデオコースを効果的に識別し,様々な解釈可能な結果を生成する。
- 参考スコア(独自算出の注目度): 46.67441830344145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online courses have significantly lowered the barrier to accessing education, yet the varying content quality of these videos poses challenges. In this work, we focus on the task of automatically evaluating the quality of video course content. We have constructed a dataset with a substantial collection of video courses and teaching materials. We propose three evaluation principles and design a new evaluation framework, \textit{VCEval}, based on these principles. The task is modeled as a multiple-choice question-answering task, with a language model serving as the evaluator. Our method effectively distinguishes video courses of different content quality and produces a range of interpretable results.
- Abstract(参考訳): オンラインコースは、教育へのアクセス障壁を著しく減らしているが、これらのビデオのコンテンツ品質の変化は課題を招いている。
本研究では,映像コンテンツの品質を自動評価する作業に焦点をあてる。
ビデオコースや教材を大量に収集したデータセットを構築した。
これらの原則に基づいて,3つの評価原則を提案し,新しい評価枠組みである「textit{VCEval}」を設計する。
タスクは複数選択の質問応答タスクとしてモデル化され、言語モデルが評価者として機能する。
本手法は,コンテンツ品質の異なるビデオコースを効果的に識別し,様々な解釈可能な結果を生成する。
関連論文リスト
- VQA$^2$: Visual Question Answering for Video Quality Assessment [76.81110038738699]
ビデオ品質アセスメント(VQA)は、低レベルの視覚知覚において古典的な分野である。
画像領域における最近の研究は、視覚質問応答(VQA)が視覚的品質を著しく低レベルに評価できることを示した。
VQA2インストラクションデータセットは,ビデオ品質評価に焦点をあてた最初の視覚的質問応答インストラクションデータセットである。
VQA2シリーズは、ビデオにおける空間的時間的品質の詳細の知覚を高めるために、視覚的および運動的トークンをインターリーブする。
論文 参考訳(メタデータ) (2024-11-06T09:39:52Z) - CLIPVQA:Video Quality Assessment via CLIP [56.94085651315878]
VQA問題(CLIPVQA)に対する効率的なCLIPベースのトランスフォーマー手法を提案する。
提案したCLIPVQAは、新しい最先端のVQAパフォーマンスを実現し、既存のベンチマークVQAメソッドよりも最大で37%の汎用性を実現している。
論文 参考訳(メタデータ) (2024-07-06T02:32:28Z) - Exploring AIGC Video Quality: A Focus on Visual Harmony, Video-Text Consistency and Domain Distribution Gap [4.922783970210658]
我々は,AIGC映像品質の評価を,視覚調和,映像テキストの整合性,領域分布ギャップの3次元に分類した。
各次元に対して、AIGCビデオの総合的な品質評価を提供するための特定のモジュールを設計する。
本研究は,異なるテキスト・ツー・ビデオ・モデルにより生成される映像の視覚的品質,流動性,スタイルの有意な変化を明らかにする。
論文 参考訳(メタデータ) (2024-04-21T08:27:20Z) - KVQ: Kwai Video Quality Assessment for Short-form Videos [24.5291786508361]
我々は,600本のユーザアップロードショートビデオと3600本のプロセッシングビデオからなる,最初の大規模KVQ(Kleidoscope short Video database for Quality Assessment)を構築した。
そこで我々は,KSVQEというビデオ品質評価装置を提案する。これにより,品質決定セマンティクスを大規模視覚言語モデルの内容理解とともに識別することができる。
論文 参考訳(メタデータ) (2024-02-11T14:37:54Z) - Perceptual Video Quality Assessment: A Survey [63.61214597655413]
映像品質評価は,映像処理分野において重要な役割を担っている。
過去20年間に様々な主観的・客観的な映像品質評価研究が実施されてきた。
この調査は、これらのビデオ品質アセスメント研究の最新かつ包括的なレビューを提供する。
論文 参考訳(メタデータ) (2024-02-05T16:13:52Z) - Q-Align: Teaching LMMs for Visual Scoring via Discrete Text-Defined
Levels [95.44077384918725]
スコアの代わりにテキスト定義のレーティングレベルを持つ大規模マルチモーダリティモデル(LMM)を提案する。
提案したQ-Alignは、画像品質評価(IQA)、画像美学評価(IAA)、映像品質評価(VQA)タスクにおける最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-12-28T16:10:25Z) - Towards Explainable In-the-Wild Video Quality Assessment: A Database and
a Language-Prompted Approach [52.07084862209754]
われわれは、13次元の質関連因子に関する4,543本のビデオについて200万以上の意見を集めている。
具体的には、各次元に対して正、負、中立の選択をラベル付けするよう被験者に求める。
これらの説明レベルの意見は、特定の品質要因と抽象的な主観的品質評価の関係を測ることができる。
論文 参考訳(メタデータ) (2023-05-22T05:20:23Z) - Blindly Assess Quality of In-the-Wild Videos via Quality-aware
Pre-training and Motion Perception [32.87570883484805]
本稿では,画像品質評価(IQA)データベースからの知識の伝達と,リッチな動きパターンを用いた大規模行動認識を提案する。
対象のVQAデータベース上で、混合リストワイドランキング損失関数を用いて、提案したモデルをトレーニングする。
論文 参考訳(メタデータ) (2021-08-19T05:29:19Z) - Towards Deep Learning Methods for Quality Assessment of
Computer-Generated Imagery [2.580765958706854]
従来のビデオコンテンツとは対照的に、ゲームコンテンツはいくつかのゲームにおいて非常に高い動きのような特別な特徴を持つ。
本稿では,ゲーム品質評価のためのディープラーニングベースの品質指標を構築する計画について概説する。
論文 参考訳(メタデータ) (2020-05-02T14:08:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。