論文の概要: Leveraging Large Language Models for enhanced personalised user experience in Smart Homes
- arxiv url: http://arxiv.org/abs/2407.12024v1
- Date: Fri, 28 Jun 2024 07:08:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-22 11:20:27.692876
- Title: Leveraging Large Language Models for enhanced personalised user experience in Smart Homes
- Title(参考訳): スマートホームにおける個人化ユーザエクスペリエンス向上のための大規模言語モデルの活用
- Authors: Jordan Rey-Jouanchicot, André Bottaro, Eric Campo, Jean-Léon Bouraoui, Nadine Vigouroux, Frédéric Vella,
- Abstract要約: 本稿では,Large Language Models(LLM)とユーザ嗜好を活用した,独自のスマートホームアーキテクチャを提案する。
提案手法の利点は, 様々なLLM実装との比較解析と同様に, 一連のシナリオで示される。
いくつかの指標は、システムの快適さ、安全性、ユーザの好みを維持する能力を決定するために評価される。
- 参考スコア(独自算出の注目度): 1.3759865690793474
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Smart home automation systems aim to improve the comfort and convenience of users in their living environment. However, adapting automation to user needs remains a challenge. Indeed, many systems still rely on hand-crafted routines for each smart object.This paper presents an original smart home architecture leveraging Large Language Models (LLMs) and user preferences to push the boundaries of personalisation and intuitiveness in the home environment.This article explores a human-centred approach that uses the general knowledge provided by LLMs to learn and facilitate interactions with the environment.The advantages of the proposed model are demonstrated on a set of scenarios, as well as a comparative analysis with various LLM implementations. Some metrics are assessed to determine the system's ability to maintain comfort, safety, and user preferences. The paper details the approach to real-world implementation and evaluation.The proposed approach of using preferences shows up to 52.3% increase in average grade, and with an average processing time reduced by 35.6% on Starling 7B Alpha LLM. In addition, performance is 26.4% better than the results of the larger models without preferences, with processing time almost 20 times faster.
- Abstract(参考訳): スマートホームオートメーションシステムは、生活環境におけるユーザの快適さと利便性を向上させることを目的としている。
しかしながら、自動化をユーザのニーズに適応させることは、依然として課題です。
実際、多くのシステムは、各スマートオブジェクトに対して手作りのルーチンに依存している。本稿では、大規模言語モデル(LLM)とユーザの好みを利用して、ホーム環境におけるパーソナライゼーションと直感性の境界を押し上げる、独自のスマートホームアーキテクチャを提示する。この記事では、LLMが提供する一般的な知識を用いて、環境とのインタラクションを学習し、促進する、人間中心のアプローチについて考察する。
いくつかの指標は、システムの快適さ、安全性、ユーザの好みを維持する能力を決定するために評価される。
提案手法は,Starling 7B Alpha LLMで平均52.3%,平均処理時間を35.6%削減する。
さらに、パフォーマンスは好みのない大型モデルの結果よりも26.4%向上し、処理時間が約20倍速くなった。
関連論文リスト
- MetaAlign: Align Large Language Models with Diverse Preferences during Inference Time [50.41806216615488]
大規模言語モデル(LLM)は、広範なテキストコーパスから広範な知識と顕著な能力を取得する。
LLMをより使いやすくするためには、それらを人間の好みに合わせることが不可欠である。
提案手法は,LLMが推論時に指定される様々な明示的あるいは暗黙的な選好と動的に整合するのを支援することを目的としている。
論文 参考訳(メタデータ) (2024-10-18T05:31:13Z) - EasyJudge: an Easy-to-use Tool for Comprehensive Response Evaluation of LLMs [6.179084469089114]
本稿では,重要な言語モデル応答を評価するために開発された EasyJudge を提案する。
軽量で、正確で、効率的で、ユーザフレンドリで、デプロイや使用が容易な、直感的な視覚化インターフェースを備えている。
論文 参考訳(メタデータ) (2024-10-13T08:24:12Z) - Self-Boosting Large Language Models with Synthetic Preference Data [97.94185115047999]
モデルアライメントのための合成選好データを活用する自己ブースティングパラダイムであるSynPOを紹介する。
4回のSynPOイテレーションの後、Llama3-8BとMistral-7Bは命令追従能力を大幅に強化した。
SynPO は様々なタスクにおける LLM の一般的な性能を改善し、よく認識された Open LLM のリーダーボード上で平均スコアが 3.2 から 5.0 に向上した。
論文 参考訳(メタデータ) (2024-10-09T14:57:31Z) - Adaptive Self-Supervised Learning Strategies for Dynamic On-Device LLM Personalization [3.1944843830667766]
大規模言語モデル(LLM)は私たちがテクノロジと対話する方法に革命をもたらしたが、個々のユーザの好みに対するパーソナライズは依然として大きな課題である。
本稿では,LSMを動的にパーソナライズするために自己指導型学習技術を利用する適応型自己監督学習戦略(ASLS)を提案する。
論文 参考訳(メタデータ) (2024-09-25T14:35:06Z) - Large Language Models for Base Station Siting: Intelligent Deployment based on Prompt or Agent [62.16747639440893]
大規模言語モデル(LLM)とその関連技術は、特に迅速な工学とエージェント工学の領域において進歩している。
このアプローチは、人間の経験と知識をこれらの洗練されたLLMに注入するために、巧妙なプロンプトの戦略的利用を必要とする。
この統合は、サービスとしての人工知能(AI)と、より容易なAIの将来のパラダイムを表している。
論文 参考訳(メタデータ) (2024-08-07T08:43:32Z) - Lifelong Personalized Low-Rank Adaptation of Large Language Models for Recommendation [50.837277466987345]
我々は、推奨のために大規模言語モデル(LLM)の分野に焦点を当てる。
ユーザ毎に独立したLoRAを管理するPersonalized LoRAモジュールを組み込んだRecLoRAを提案する。
また、Few2Many Learning Strategyを設計し、従来のレコメンデーションモデルをレンズとして使用して、小さなトレーニングスペースをフルスペースに拡大する。
論文 参考訳(メタデータ) (2024-08-07T04:20:28Z) - BAPO: Base-Anchored Preference Optimization for Overcoming Forgetting in Large Language Models Personalization [26.526171463511332]
本稿では,パーソナライズされた好み最適化が大規模言語モデル(LLM)に与える影響について検討する。
BAPOは、グローバルな知識や一般的なアライメントを最小限に抑えながら、多様なユーザの好みに効果的に適応する。
論文 参考訳(メタデータ) (2024-06-30T13:30:04Z) - Large Language Models for Power Scheduling: A User-Centric Approach [6.335540414370735]
本稿では、任意のユーザの音声要求(VRQ)をリソース割り当てベクトルに変換することで、リソーススケジューリング問題に対する新しいアーキテクチャを提案する。
具体的には、要求を最適化問題(OP)に変換するためのLLM意図認識エージェント、LLM OPパラメータ識別エージェント、OP解決エージェントを設計する。
論文 参考訳(メタデータ) (2024-06-29T15:47:28Z) - Interactive Hyperparameter Optimization in Multi-Objective Problems via
Preference Learning [65.51668094117802]
我々は多目的機械学習(ML)に適した人間中心型対話型HPO手法を提案する。
ユーザが自分のニーズに最も適した指標を推測する代わりに、私たちのアプローチは自動的に適切な指標を学習します。
論文 参考訳(メタデータ) (2023-09-07T09:22:05Z) - Unlocking the Potential of User Feedback: Leveraging Large Language
Model as User Simulator to Enhance Dialogue System [65.93577256431125]
本稿では,ユーザガイド応答最適化 (UGRO) という代替手法を提案し,タスク指向の対話モデルと組み合わせる。
このアプローチでは、アノテーションのないユーザシミュレータとしてLLMを使用して対話応答を評価し、より小型のエンドツーエンドTODモデルと組み合わせる。
提案手法は従来のSOTA(State-of-the-art)よりも優れている。
論文 参考訳(メタデータ) (2023-06-16T13:04:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。