One-Shot Unlearning of Personal Identities
- URL: http://arxiv.org/abs/2407.12069v1
- Date: Tue, 16 Jul 2024 10:00:54 GMT
- Title: One-Shot Unlearning of Personal Identities
- Authors: Thomas De Min, Subhankar Roy, Massimiliano Mancini, Stéphane Lathuilière, Elisa Ricci,
- Abstract summary: One-Shot Unlearning of Personal Identities (O-UPI) evaluates unlearning models when the training data is not accessible.
We benchmark the forgetting on CelebA and CelebA-HQ datasets with different unlearning set sizes.
Our findings indicate that existing approaches struggle when data availability is limited, with greater difficulty when there is dissimilarity between provided samples and data used at training time.
- Score: 38.36863497458095
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Machine unlearning (MU) aims to erase data from a model as if it never saw them during training. To this extent, existing MU approaches assume complete or partial access to the training data, which can be limited over time due to privacy regulations. However, no setting or benchmark exists to probe the effectiveness of MU methods in such scenarios, i.e. when training data is missing. To fill this gap, we propose a novel task we call One-Shot Unlearning of Personal Identities (O-UPI) that evaluates unlearning models when the training data is not accessible. Specifically, we focus on the identity unlearning case, which is relevant due to current regulations requiring data deletion after training. To cope with data absence, we expect users to provide a portraiting picture to perform unlearning. To evaluate methods in O-UPI, we benchmark the forgetting on CelebA and CelebA-HQ datasets with different unlearning set sizes. We test applicable methods on this challenging benchmark, proposing also an effective method that meta-learns to forget identities from a single image. Our findings indicate that existing approaches struggle when data availability is limited, with greater difficulty when there is dissimilarity between provided samples and data used at training time. We will release the code and benchmark upon acceptance.
Related papers
- Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
arXiv Detail & Related papers (2024-07-30T23:43:59Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - TOFU: A Task of Fictitious Unlearning for LLMs [99.92305790945507]
Large language models trained on massive corpora of data from the web can reproduce sensitive or private data raising both legal and ethical concerns.
Unlearning, or tuning models to forget information present in their training data, provides us with a way to protect private data after training.
We present TOFU, a benchmark aimed at helping deepen our understanding of unlearning.
arXiv Detail & Related papers (2024-01-11T18:57:12Z) - Data-Free Sketch-Based Image Retrieval [56.96186184599313]
We propose Data-Free (DF)-SBIR, where pre-trained, single-modality classification models have to be leveraged to learn cross-modal metric-space for retrieval without access to any training data.
We present a methodology for DF-SBIR, which can leverage knowledge from models independently trained to perform classification on photos and sketches.
Our method also achieves mAPs competitive with data-dependent approaches, all the while requiring no training data.
arXiv Detail & Related papers (2023-03-14T10:34:07Z) - Learning to Unlearn: Instance-wise Unlearning for Pre-trained
Classifiers [71.70205894168039]
We consider instance-wise unlearning, of which the goal is to delete information on a set of instances from a pre-trained model.
We propose two methods that reduce forgetting on the remaining data: 1) utilizing adversarial examples to overcome forgetting at the representation-level and 2) leveraging weight importance metrics to pinpoint network parameters guilty of propagating unwanted information.
arXiv Detail & Related papers (2023-01-27T07:53:50Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.