Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens
- URL: http://arxiv.org/abs/2407.21248v1
- Date: Tue, 30 Jul 2024 23:43:59 GMT
- Title: Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens
- Authors: Anqi Zhang, Chaofeng Wu,
- Abstract summary: Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
- Score: 1.2549198550400134
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) are extensively used, there are raising concerns regarding privacy, security, and copyright due to their opaque training data, which brings the problem of detecting pre-training data on the table. Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs), which heavily depend on LLMs' capability of verbatim memorization. However, this reliance presents challenges, especially given the vast amount of training data and the restricted number of effective training epochs. In this paper, we propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification. Our method adaptively locates \textit{surprising tokens} of the input. A token is surprising to a LLM if the prediction on the token is "certain but wrong", which refers to low Shannon entropy of the probability distribution and low probability of the ground truth token at the same time. By using the prediction probability of surprising tokens to measure \textit{surprising}, the detection method is achieved based on the simple hypothesis that seeing seen data is less surprising for the model compared with seeing unseen data. The method can be applied without any access to the the pre-training data corpus or additional training like reference models. Our approach exhibits a consistent enhancement compared to existing methods in diverse experiments conducted on various benchmarks and models, achieving a maximum improvement of 29.5\%. We also introduce a new benchmark Dolma-Book developed upon a novel framework, which employs book data collected both before and after model training to provide further evaluation.
Related papers
- Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method [108.56493934296687]
We introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection.
We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text.
arXiv Detail & Related papers (2024-09-23T07:55:35Z) - Training on the Benchmark Is Not All You Need [52.01920740114261]
We propose a simple and effective data leakage detection method based on the contents of multiple-choice options.
Our method is able to work under black-box conditions without access to model training data or weights.
We evaluate the degree of data leakage of 31 mainstream open-source LLMs on four benchmark datasets.
arXiv Detail & Related papers (2024-09-03T11:09:44Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - Probing Language Models for Pre-training Data Detection [11.37731401086372]
We propose to utilize the probing technique for pre-training data detection by examining the model's internal activations.
Our method is simple and effective and leads to more trustworthy pre-training data detection.
arXiv Detail & Related papers (2024-06-03T13:58:04Z) - Detecting Pretraining Data from Large Language Models [90.12037980837738]
We study the pretraining data detection problem.
Given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text?
We introduce a new detection method Min-K% Prob based on a simple hypothesis.
arXiv Detail & Related papers (2023-10-25T17:21:23Z) - Overcoming Overconfidence for Active Learning [1.2776312584227847]
We present two novel methods to address the problem of overconfidence that arises in the active learning scenario.
The first is an augmentation strategy named Cross-Mix-and-Mix (CMaM), which aims to calibrate the model by expanding the limited training distribution.
The second is a selection strategy named Ranked Margin Sampling (RankedMS), which prevents choosing data that leads to overly confident predictions.
arXiv Detail & Related papers (2023-08-21T09:04:54Z) - Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft
Prompting and Calibrated Confidence Estimation [56.57532238195446]
We propose a method named Ethicist for targeted training data extraction.
To elicit memorization, we tune soft prompt embeddings while keeping the model fixed.
We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark.
arXiv Detail & Related papers (2023-07-10T08:03:41Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.