FairMILE: Towards an Efficient Framework for Fair Graph Representation
Learning
- URL: http://arxiv.org/abs/2211.09925v3
- Date: Wed, 18 Oct 2023 01:09:17 GMT
- Title: FairMILE: Towards an Efficient Framework for Fair Graph Representation
Learning
- Authors: Yuntian He, Saket Gurukar, Srinivasan Parthasarathy
- Abstract summary: We study the problem of efficient fair graph representation learning and propose a novel framework FairMILE.
FairMILE is a multi-level paradigm that can efficiently learn graph representations while enforcing fairness and preserving utility.
- Score: 4.75624470851544
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph representation learning models have demonstrated great capability in
many real-world applications. Nevertheless, prior research indicates that these
models can learn biased representations leading to discriminatory outcomes. A
few works have been proposed to mitigate the bias in graph representations.
However, most existing works require exceptional time and computing resources
for training and fine-tuning. To this end, we study the problem of efficient
fair graph representation learning and propose a novel framework FairMILE.
FairMILE is a multi-level paradigm that can efficiently learn graph
representations while enforcing fairness and preserving utility. It can work in
conjunction with any unsupervised embedding approach and accommodate various
fairness constraints. Extensive experiments across different downstream tasks
demonstrate that FairMILE significantly outperforms state-of-the-art baselines
in terms of running time while achieving a superior trade-off between fairness
and utility.
Related papers
- Debiasing Graph Representation Learning based on Information Bottleneck [18.35405511009332]
We present the design and implementation of GRAFair, a new framework based on a variational graph auto-encoder.
The crux of GRAFair is the Conditional Fairness Bottleneck, where the objective is to capture the trade-off between the utility of representations and sensitive information of interest.
Experiments on various real-world datasets demonstrate the effectiveness of our proposed method in terms of fairness, utility, robustness, and stability.
arXiv Detail & Related papers (2024-09-02T16:45:23Z) - A Benchmark for Fairness-Aware Graph Learning [58.515305543487386]
We present an extensive benchmark on ten representative fairness-aware graph learning methods.
Our in-depth analysis reveals key insights into the strengths and limitations of existing methods.
arXiv Detail & Related papers (2024-07-16T18:43:43Z) - Deceptive Fairness Attacks on Graphs via Meta Learning [102.53029537886314]
We study deceptive fairness attacks on graphs to answer the question: How can we achieve poisoning attacks on a graph learning model to exacerbate the bias deceptively?
We propose a meta learning-based framework named FATE to attack various fairness definitions and graph learning models.
We conduct extensive experimental evaluations on real-world datasets in the task of semi-supervised node classification.
arXiv Detail & Related papers (2023-10-24T09:10:14Z) - Analyzing the Effect of Sampling in GNNs on Individual Fairness [79.28449844690566]
Graph neural network (GNN) based methods have saturated the field of recommender systems.
We extend an existing method for promoting individual fairness on graphs to support mini-batch, or sub-sample based, training of a GNN.
We show that mini-batch training facilitate individual fairness promotion by allowing for local nuance to guide the process of fairness promotion in representation learning.
arXiv Detail & Related papers (2022-09-08T16:20:25Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
This work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs)
Building upon the analysis, fairness-aware data augmentation frameworks are developed to reduce the intrinsic bias.
Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms.
arXiv Detail & Related papers (2022-01-21T05:49:15Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - Fairness-Aware Node Representation Learning [9.850791193881651]
This study addresses fairness issues in graph contrastive learning with fairness-aware graph augmentation designs.
Different fairness notions on graphs are introduced, which serve as guidelines for the proposed graph augmentations.
Experimental results on real social networks are presented to demonstrate that the proposed augmentations can enhance fairness in terms of statistical parity and equal opportunity.
arXiv Detail & Related papers (2021-06-09T21:12:14Z) - Biased Edge Dropout for Enhancing Fairness in Graph Representation
Learning [14.664485680918725]
We propose a biased edge dropout algorithm (FairDrop) to counter-act homophily and improve fairness in graph representation learning.
FairDrop can be plugged in easily on many existing algorithms, is efficient, adaptable, and can be combined with other fairness-inducing solutions.
We prove that the proposed algorithm can successfully improve the fairness of all models up to a small or negligible drop in accuracy.
arXiv Detail & Related papers (2021-04-29T08:59:36Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
We present a comprehensive study on graph embedded few-shot learning.
We introduce a graph regularization approach that allows a deeper understanding of the impact of incorporating graph information between labels.
Our approach improves the performance of strong base learners by up to 2% on Mini-ImageNet and 6.7% on ImageNet-FS.
arXiv Detail & Related papers (2021-02-14T05:28:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.