論文の概要: The object detection method aids in image reconstruction evaluation and clinical interpretation of meniscal abnormalities
- arxiv url: http://arxiv.org/abs/2407.12184v1
- Date: Tue, 16 Jul 2024 21:25:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-18 19:08:36.745839
- Title: The object detection method aids in image reconstruction evaluation and clinical interpretation of meniscal abnormalities
- Title(参考訳): 半月板異常の画像再構成評価と臨床的解釈を支援する物体検出法
- Authors: Natalia Konovalova, Aniket Tolpadi, Felix Liu, Zehra Akkaya, Felix Gassert, Paula Giesler, Johanna Luitjens, Misung Han, Emma Bahroos, Sharmila Majumdar, Valentina Pedoia,
- Abstract要約: 本研究では,ディープラーニング(DL)画像再構成の品質と異常検出性能の関係について検討した。
再建画像における半月面異常の解釈を強化するための人工知能アシスタントの有効性を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the relationship between deep learning (DL) image reconstruction quality and anomaly detection performance, and evaluates the efficacy of an artificial intelligence (AI) assistant in enhancing radiologists' interpretation of meniscal anomalies on reconstructed images. A retrospective study was conducted using an in-house reconstruction and anomaly detection pipeline to assess knee MR images from 896 patients. The original and 14 sets of DL-reconstructed images were evaluated using standard reconstruction and object detection metrics, alongside newly developed box-based reconstruction metrics. Two clinical radiologists reviewed a subset of 50 patients' images, both original and AI-assisted reconstructed, with subsequent assessment of their accuracy and performance characteristics. Results indicated that the structural similarity index (SSIM) showed a weaker correlation with anomaly detection metrics (mAP, r=0.64, p=0.01; F1 score, r=0.38, p=0.18), while box-based SSIM had a stronger association with detection performance (mAP, r=0.81, p<0.01; F1 score, r=0.65, p=0.01). Minor SSIM fluctuations did not affect detection outcomes, but significant changes reduced performance. Radiologists' AI-assisted evaluations demonstrated improved accuracy (86.0% without assistance vs. 88.3% with assistance, p<0.05) and interrater agreement (Cohen's kappa, 0.39 without assistance vs. 0.57 with assistance). An additional review led to the incorporation of 17 more lesions into the dataset. The proposed anomaly detection method shows promise in evaluating reconstruction algorithms for automated tasks and aiding radiologists in interpreting DL-reconstructed MR images.
- Abstract(参考訳): 本研究は, 深層学習(DL)画像再構成の品質と異常検出性能の関係について検討し, 再建画像に対する半月異常の解釈を高度化するための人工知能(AI)アシスタントの有効性を評価する。
896例の膝関節MRI画像を評価するために, 室内再建と異常検出パイプラインを用いて回顧調査を行った。
DL再構成画像の原画像と14セットを,新たに開発されたボックスベース再構築指標とともに,標準再構成とオブジェクト検出指標を用いて評価した。
2人の臨床放射線技師が50人の患者の画像のサブセットをレビューした。
その結果, 構造類似度指数 (SSIM) は異常検出指標 (mAP, r=0.64, p=0.01; F1 score, r=0.38, p=0.18) との相関が弱く, ボックスベースSSIMは検出性能 (mAP, r=0.81, p<0.01; F1 score, r=0.65, p=0.01) と強い相関を示した。
SSIMの小さな変動は検出結果には影響しなかったが、大きな変化は性能を低下させた。
放射線技師によるAIによる評価では、精度が改善(援助なし86.0%、援助なし88.3%、p<0.05)し、インターラッター契約(Cohen's kappa、援助なし0.39、援助なし0.57)した。
さらなるレビューにより、データセットにさらに17の病変が組み込まれた。
提案手法は, 自動作業のための再構成アルゴリズムの評価と, DL再構成MR画像の解釈において, 放射線技師を支援することの確証を示す。
関連論文リスト
- Rethinking Medical Anomaly Detection in Brain MRI: An Image Quality Assessment Perspective [14.39502951611029]
構造類似度指数の損失をl1損失と組み合わせた核融合品質損失関数を提案する。
また,正常領域と異常領域の平均強度比(AIR)を高めるデータ前処理戦略を導入し,異常の識別を改善した。
提案したIQAアプローチは,BraTS21(T2,FLAIR)およびMSULBデータセット上のDice係数(DICE)とAUPRC(Area Under the Precision-Recall Curve)において,大幅な改善(>10%)を達成している。
論文 参考訳(メタデータ) (2024-08-15T15:55:07Z) - Enhanced Denoising of Optical Coherence Tomography Images Using Residual U-Net [0.0]
本稿では,雑音を効果的に低減し,画像の明瞭度を向上するResidual U-Netアーキテクチャを用いた拡張型復調モデルを提案する。
ピーク信号ノイズ比(PSNR)はPS OCT画像に対して34.343$pm$1.113であり、構造類似度指数測定(SSIM)値は0.885$pm$0.030である。
論文 参考訳(メタデータ) (2024-07-18T01:35:03Z) - A Federated Learning Framework for Stenosis Detection [70.27581181445329]
本研究は,冠動脈造影画像(CA)の狭窄検出におけるFL(Federated Learning)の使用について検討した。
アンコナのOspedale Riuniti(イタリア)で取得した200人の患者1219枚の画像を含む2施設の異種データセットについて検討した。
データセット2には、文献で利用可能な90人の患者からの7492のシーケンシャルな画像が含まれている。
論文 参考訳(メタデータ) (2023-10-30T11:13:40Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Uncertainty Estimation and Out-of-Distribution Detection for Deep
Learning-Based Image Reconstruction using the Local Lipschitz [9.143327181265976]
画像再構成を含む逆問題の解法として,深層学習に基づく手法が提案されている。
診断のために、与えられた入力がトレーニングデータ分布に該当するかどうかを評価することが不可欠である。
分布外画像と分布内画像とを99.94%の曲線下領域で識別するための局所リプシッツ計量に基づく手法を提案する。
論文 参考訳(メタデータ) (2023-05-12T17:17:01Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
磁気共鳴脳画像における運動アーチファクトは重要な問題である。
MR画像の画質評価は,臨床診断に先立って基本的である。
構造類似度指数(SSIM)回帰に基づく自動画像品質評価法が提案されている。
論文 参考訳(メタデータ) (2022-06-14T10:16:54Z) - Validation and Generalizability of Self-Supervised Image Reconstruction
Methods for Undersampled MRI [4.832984894979636]
自己教師型認知とニューラルネットワーク画像を用いた2つの自己教師型アルゴリズムについて検討した。
それらの一般化性は、トレーニングとは異なる実験条件から、前向きにアンダーサンプリングされたデータでテストされた。
論文 参考訳(メタデータ) (2022-01-29T09:06:04Z) - Towards Ultrafast MRI via Extreme k-Space Undersampling and
Superresolution [65.25508348574974]
我々は、オリジナルのfastMRIチャレンジを参照するすべての公開論文によって報告されたMRI加速係数を下回る。
低解像を補うための強力な深層学習に基づく画像強化手法を検討する。
復元された画像の品質は他の方法よりも高く、MSEは0.00114、PSNRは29.6 dB、SSIMは0.956 x16加速係数である。
論文 参考訳(メタデータ) (2021-03-04T10:45:01Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
トモグラフィー画像では、取得した信号に擬似逆フォワードモデルを適用することにより、解剖学的構造を再構成する。
患者の動きは、復元過程における幾何学的アライメントを損なうため、運動アーティファクトが生じる。
本研究では,スキャン対象から独立して剛性運動の構造を認識する外観学習手法を提案する。
論文 参考訳(メタデータ) (2020-06-18T09:49:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。