Base Models for Parabolic Partial Differential Equations
- URL: http://arxiv.org/abs/2407.12234v1
- Date: Wed, 17 Jul 2024 01:04:28 GMT
- Title: Base Models for Parabolic Partial Differential Equations
- Authors: Xingzi Xu, Ali Hasan, Jie Ding, Vahid Tarokh,
- Abstract summary: Parabolic partial differential equations (PDEs) appear in many disciplines to model the evolution of various mathematical objects.
It is often necessary to compute the solutions or a function of the solutions to a parametric PDE in multiple scenarios corresponding to different parameters of this PDE.
We propose a framework for finding solutions to parabolic PDEs across different scenarios by meta-learning an underlying base.
- Score: 30.565534769404536
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Parabolic partial differential equations (PDEs) appear in many disciplines to model the evolution of various mathematical objects, such as probability flows, value functions in control theory, and derivative prices in finance. It is often necessary to compute the solutions or a function of the solutions to a parametric PDE in multiple scenarios corresponding to different parameters of this PDE. This process often requires resolving the PDEs from scratch, which is time-consuming. To better employ existing simulations for the PDEs, we propose a framework for finding solutions to parabolic PDEs across different scenarios by meta-learning an underlying base distribution. We build upon this base distribution to propose a method for computing solutions to parametric PDEs under different parameter settings. Finally, we illustrate the application of the proposed methods through extensive experiments in generative modeling, stochastic control, and finance. The empirical results suggest that the proposed approach improves generalization to solving PDEs under new parameter regimes.
Related papers
- Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
We propose an approximate Bayesian method for quantifying the total uncertainty in inverse PDE solutions obtained with machine learning surrogate models.
We test the proposed framework by comparing it with the iterative ensemble smoother and deep ensembling methods for a non-linear diffusion equation.
arXiv Detail & Related papers (2024-08-20T19:06:02Z) - A Fast Learning-Based Surrogate of Electrical Machines using a Reduced Basis [44.99833362998488]
A surrogate model approximates the outputs of a solver of Partial Differential Equations (PDEs) with a low computational cost.
We present promising results on two use cases concerning electrical machines.
arXiv Detail & Related papers (2024-06-27T08:29:04Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
We present the Universal PDE solver (Unisolver) capable of solving a wide scope of PDEs.
Our key finding is that a PDE solution is fundamentally under the control of a series of PDE components.
Unisolver achieves consistent state-of-the-art results on three challenging large-scale benchmarks.
arXiv Detail & Related papers (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
We study the benefits of weight-tied neural network architectures for steady-state PDEs.
We propose FNO-DEQ, a deep equilibrium variant of the FNO architecture that directly solves for the solution of a steady-state PDE.
arXiv Detail & Related papers (2023-11-30T22:34:57Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
Partial differential equations (PDEs) underlie our understanding and prediction of natural phenomena.
We propose a novel approach for solving parametric PDEs using a Finite Element Operator Network (FEONet)
arXiv Detail & Related papers (2023-08-09T03:56:07Z) - Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs [6.649496716171139]
We develop a novel computational framework to approximate solution operators of evolution partial differential equations (PDEs)
We propose to approximate the solution operator of the PDE by learning the control vector field in the parameter space.
This allows for substantially reduced computational cost to solve the evolution PDE with arbitrary initial conditions.
arXiv Detail & Related papers (2023-01-31T19:26:25Z) - Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
Partial differential equations (PDEs) are often computationally challenging to solve.
We present a meta-learning based method which learns to rapidly solve problems from a distribution of related PDEs.
arXiv Detail & Related papers (2022-11-03T06:17:52Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
We introduce a practical method to enforce partial differential equation (PDE) constraints for functions defined by neural networks (NNs)
We develop a differentiable PDE-constrained layer that can be incorporated into any NN architecture.
Our results show that incorporating hard constraints directly into the NN architecture achieves much lower test error when compared to training on an unconstrained objective.
arXiv Detail & Related papers (2022-07-18T15:11:43Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
We present a method, which can partially alleviate this problem, by improving neural PDE solver sample complexity.
In the context of PDEs, it turns out that we are able to quantitatively derive an exhaustive list of data transformations.
We show how it can easily be deployed to improve neural PDE solver sample complexity by an order of magnitude.
arXiv Detail & Related papers (2022-02-15T18:43:17Z) - DiffNet: Neural Field Solutions of Parametric Partial Differential
Equations [30.80582606420882]
We consider a mesh-based approach for training a neural network to produce field predictions of solutions to PDEs.
We use a weighted Galerkin loss function based on the Finite Element Method (FEM) on a parametric elliptic PDE.
We prove theoretically, and illustrate with experiments, convergence results analogous to mesh convergence analysis deployed in finite element solutions to PDEs.
arXiv Detail & Related papers (2021-10-04T17:59:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.