VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions
- URL: http://arxiv.org/abs/2407.12345v1
- Date: Wed, 17 Jul 2024 06:39:52 GMT
- Title: VisionTrap: Vision-Augmented Trajectory Prediction Guided by Textual Descriptions
- Authors: Seokha Moon, Hyun Woo, Hongbeen Park, Haeji Jung, Reza Mahjourian, Hyung-gun Chi, Hyerin Lim, Sangpil Kim, Jinkyu Kim,
- Abstract summary: In this work, we propose a novel method that also incorporates visual input from surround-view cameras.
Our method achieves a latency of 53 ms, making it feasible for real-time processing.
Our experiments show that both the visual inputs and the textual descriptions contribute to improvements in trajectory prediction performance.
- Score: 10.748597086208145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting future trajectories for other road agents is an essential task for autonomous vehicles. Established trajectory prediction methods primarily use agent tracks generated by a detection and tracking system and HD map as inputs. In this work, we propose a novel method that also incorporates visual input from surround-view cameras, allowing the model to utilize visual cues such as human gazes and gestures, road conditions, vehicle turn signals, etc, which are typically hidden from the model in prior methods. Furthermore, we use textual descriptions generated by a Vision-Language Model (VLM) and refined by a Large Language Model (LLM) as supervision during training to guide the model on what to learn from the input data. Despite using these extra inputs, our method achieves a latency of 53 ms, making it feasible for real-time processing, which is significantly faster than that of previous single-agent prediction methods with similar performance. Our experiments show that both the visual inputs and the textual descriptions contribute to improvements in trajectory prediction performance, and our qualitative analysis highlights how the model is able to exploit these additional inputs. Lastly, in this work we create and release the nuScenes-Text dataset, which augments the established nuScenes dataset with rich textual annotations for every scene, demonstrating the positive impact of utilizing VLM on trajectory prediction. Our project page is at https://moonseokha.github.io/VisionTrap/
Related papers
- Predicting Long-horizon Futures by Conditioning on Geometry and Time [49.86180975196375]
We explore the task of generating future sensor observations conditioned on the past.
We leverage the large-scale pretraining of image diffusion models which can handle multi-modality.
We create a benchmark for video prediction on a diverse set of videos spanning indoor and outdoor scenes.
arXiv Detail & Related papers (2024-04-17T16:56:31Z) - Humanoid Locomotion as Next Token Prediction [84.21335675130021]
Our model is a causal transformer trained via autoregressive prediction of sensorimotor trajectories.
We show that our model enables a full-sized humanoid to walk in San Francisco zero-shot.
Our model can transfer to the real world even when trained on only 27 hours of walking data, and can generalize commands not seen during training like walking backward.
arXiv Detail & Related papers (2024-02-29T18:57:37Z) - What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
We find that visual representations designed for manipulation and control tasks do not necessarily generalize under subtle changes in lighting and scene texture.
We find that emergent segmentation ability is a strong predictor of out-of-distribution generalization among ViT models.
arXiv Detail & Related papers (2023-11-03T18:09:08Z) - A Novel Deep Neural Network for Trajectory Prediction in Automated
Vehicles Using Velocity Vector Field [12.067838086415833]
This paper proposes a novel technique for trajectory prediction that combines a data-driven learning-based method with a velocity vector field (VVF) generated from a nature-inspired concept.
The accuracy remains consistent with decreasing observation windows which alleviates the requirement of a long history of past observations for accurate trajectory prediction.
arXiv Detail & Related papers (2023-09-19T22:14:52Z) - Comparison of Pedestrian Prediction Models from Trajectory and
Appearance Data for Autonomous Driving [13.126949982768505]
The ability to anticipate pedestrian motion changes is a critical capability for autonomous vehicles.
In urban environments, pedestrians may enter the road area and create a high risk for driving.
This work presents a comparative evaluation of trajectory-only and appearance-based methods for pedestrian prediction.
arXiv Detail & Related papers (2023-05-25T11:24:38Z) - Vehicle Trajectory Prediction on Highways Using Bird Eye View
Representations and Deep Learning [0.5420492913071214]
This work presents a novel method for predicting vehicle trajectories in highway scenarios using efficient bird's eye view representations and convolutional neural networks.
The U-net model has been selected as the prediction kernel to generate future visual representations of the scene using an image-to-image regression approach.
A method has been implemented to extract vehicle positions from the generated graphical representations to achieve subpixel resolution.
arXiv Detail & Related papers (2022-07-04T13:39:46Z) - PreViTS: Contrastive Pretraining with Video Tracking Supervision [53.73237606312024]
PreViTS is an unsupervised SSL framework for selecting clips containing the same object.
PreViTS spatially constrains the frame regions to learn from and trains the model to locate meaningful objects.
We train a momentum contrastive (MoCo) encoder on VGG-Sound and Kinetics-400 datasets with PreViTS.
arXiv Detail & Related papers (2021-12-01T19:49:57Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - The Importance of Balanced Data Sets: Analyzing a Vehicle Trajectory
Prediction Model based on Neural Networks and Distributed Representations [0.0]
We investigate the composition of training data in vehicle trajectory prediction.
We show that the models employing our semantic vector representation outperform the numerical model when trained on an adequate data set.
arXiv Detail & Related papers (2020-09-30T20:00:11Z) - AutoTrajectory: Label-free Trajectory Extraction and Prediction from
Videos using Dynamic Points [92.91569287889203]
We present a novel, label-free algorithm, AutoTrajectory, for trajectory extraction and prediction.
To better capture the moving objects in videos, we introduce dynamic points.
We aggregate dynamic points to instance points, which stand for moving objects such as pedestrians in videos.
arXiv Detail & Related papers (2020-07-11T08:43:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.