HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects
- URL: http://arxiv.org/abs/2407.12371v2
- Date: Wed, 11 Sep 2024 09:53:18 GMT
- Title: HIMO: A New Benchmark for Full-Body Human Interacting with Multiple Objects
- Authors: Xintao Lv, Liang Xu, Yichao Yan, Xin Jin, Congsheng Xu, Shuwen Wu, Yifan Liu, Lincheng Li, Mengxiao Bi, Wenjun Zeng, Xiaokang Yang,
- Abstract summary: HIMO is a dataset of full-body human interacting with multiple objects.
HIMO contains 3.3K 4D HOI sequences and 4.08M 3D HOI frames.
- Score: 86.86284624825356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating human-object interactions (HOIs) is critical with the tremendous advances of digital avatars. Existing datasets are typically limited to humans interacting with a single object while neglecting the ubiquitous manipulation of multiple objects. Thus, we propose HIMO, a large-scale MoCap dataset of full-body human interacting with multiple objects, containing 3.3K 4D HOI sequences and 4.08M 3D HOI frames. We also annotate HIMO with detailed textual descriptions and temporal segments, benchmarking two novel tasks of HOI synthesis conditioned on either the whole text prompt or the segmented text prompts as fine-grained timeline control. To address these novel tasks, we propose a dual-branch conditional diffusion model with a mutual interaction module for HOI synthesis. Besides, an auto-regressive generation pipeline is also designed to obtain smooth transitions between HOI segments. Experimental results demonstrate the generalization ability to unseen object geometries and temporal compositions.
Related papers
- VrdONE: One-stage Video Visual Relation Detection [30.983521962897477]
Video Visual Relation Detection (VidVRD) focuses on understanding how entities over time and space in videos.
Traditional methods for VidVRD, challenged by its complexity, typically split the task into two parts: one for identifying what relation are present and another for determining their temporal boundaries.
We propose VrdONE, a streamlined yet efficacious one-stage model for VidVRD.
arXiv Detail & Related papers (2024-08-18T08:38:20Z) - F-HOI: Toward Fine-grained Semantic-Aligned 3D Human-Object Interactions [42.10935504617501]
Existing 3D human object interaction (HOI) datasets and models simply align global descriptions with the long HOI sequence.
We argue that fine-grained semantic alignment, which utilizes state-level descriptions, offers a promising paradigm for learning semantically rich HOI representations.
arXiv Detail & Related papers (2024-07-17T09:43:58Z) - Scaling Up Dynamic Human-Scene Interaction Modeling [58.032368564071895]
TRUMANS is the most comprehensive motion-captured HSI dataset currently available.
It intricately captures whole-body human motions and part-level object dynamics.
We devise a diffusion-based autoregressive model that efficiently generates HSI sequences of any length.
arXiv Detail & Related papers (2024-03-13T15:45:04Z) - SM$^3$: Self-Supervised Multi-task Modeling with Multi-view 2D Images
for Articulated Objects [24.737865259695006]
We propose a self-supervised interaction perception method, referred to as SM$3$, to model articulated objects.
By constructing 3D geometries and textures from the captured 2D images, SM$3$ achieves integrated optimization of movable part and joint parameters.
Evaluations demonstrate that SM$3$ surpasses existing benchmarks across various categories and objects, while its adaptability in real-world scenarios has been thoroughly validated.
arXiv Detail & Related papers (2024-01-17T11:15:09Z) - HOI-Diff: Text-Driven Synthesis of 3D Human-Object Interactions using Diffusion Models [42.62823339416957]
We address the problem of generating realistic 3D human-object interactions (HOIs) driven by textual prompts.
We first develop a dual-branch diffusion model (HOI-DM) to generate both human and object motions conditioned on the input text.
We also develop an affordance prediction diffusion model (APDM) to predict the contacting area between the human and object.
arXiv Detail & Related papers (2023-12-11T17:41:17Z) - Hierarchical Generation of Human-Object Interactions with Diffusion
Probabilistic Models [71.64318025625833]
This paper presents a novel approach to generating the 3D motion of a human interacting with a target object.
Our framework first generates a set of milestones and then synthesizes the motion along them.
The experiments on the NSM, COUCH, and SAMP datasets show that our approach outperforms previous methods by a large margin in both quality and diversity.
arXiv Detail & Related papers (2023-10-03T17:50:23Z) - InterDiff: Generating 3D Human-Object Interactions with Physics-Informed
Diffusion [29.25063155767897]
This paper addresses a novel task of anticipating 3D human-object interactions (HOIs)
Our task is significantly more challenging, as it requires modeling dynamic objects with various shapes, capturing whole-body motion, and ensuring physically valid interactions.
Experiments on multiple human-object interaction datasets demonstrate the effectiveness of our method for this task, capable of producing realistic, vivid, and remarkably long-term 3D HOI predictions.
arXiv Detail & Related papers (2023-08-31T17:59:08Z) - ROAM: Robust and Object-Aware Motion Generation Using Neural Pose
Descriptors [73.26004792375556]
This paper shows that robustness and generalisation to novel scene objects in 3D object-aware character synthesis can be achieved by training a motion model with as few as one reference object.
We leverage an implicit feature representation trained on object-only datasets, which encodes an SE(3)-equivariant descriptor field around the object.
We demonstrate substantial improvements in 3D virtual character motion and interaction quality and robustness to scenarios with unseen objects.
arXiv Detail & Related papers (2023-08-24T17:59:51Z) - Contrastive Lift: 3D Object Instance Segmentation by Slow-Fast
Contrastive Fusion [110.84357383258818]
We propose a novel approach to lift 2D segments to 3D and fuse them by means of a neural field representation.
The core of our approach is a slow-fast clustering objective function, which is scalable and well-suited for scenes with a large number of objects.
Our approach outperforms the state-of-the-art on challenging scenes from the ScanNet, Hypersim, and Replica datasets.
arXiv Detail & Related papers (2023-06-07T17:57:45Z) - Spatio-Temporal Interaction Graph Parsing Networks for Human-Object
Interaction Recognition [55.7731053128204]
In given video-based Human-Object Interaction scene, modeling thetemporal relationship between humans and objects are the important cue to understand the contextual information presented in the video.
With the effective-temporal relationship modeling, it is possible not only to uncover contextual information in each frame but also directly capture inter-time dependencies.
The full use of appearance features, spatial location and the semantic information are also the key to improve the video-based Human-Object Interaction recognition performance.
arXiv Detail & Related papers (2021-08-19T11:57:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.