GraphGuard: Contrastive Self-Supervised Learning for Credit-Card Fraud Detection in Multi-Relational Dynamic Graphs
- URL: http://arxiv.org/abs/2407.12440v1
- Date: Wed, 17 Jul 2024 09:50:58 GMT
- Title: GraphGuard: Contrastive Self-Supervised Learning for Credit-Card Fraud Detection in Multi-Relational Dynamic Graphs
- Authors: Kristófer Reynisson, Marco Schreyer, Damian Borth,
- Abstract summary: We present GraphGuard, a novel contrastive self-supervised graph-based framework for detecting fraudulent credit card transactions.
Our results provide a promising initial direction for exploring the effectiveness of graph-based self-supervised approaches for credit card fraud detection.
- Score: 5.182014186927255
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Credit card fraud has significant implications at both an individual and societal level, making effective prevention essential. Current methods rely heavily on feature engineering and labeled information, both of which have significant limitations. In this work, we present GraphGuard, a novel contrastive self-supervised graph-based framework for detecting fraudulent credit card transactions. We conduct experiments on a real-world dataset and a synthetic dataset. Our results provide a promising initial direction for exploring the effectiveness of graph-based self-supervised approaches for credit card fraud detection.
Related papers
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - 2SFGL: A Simple And Robust Protocol For Graph-Based Fraud Detection [1.6427658855248812]
We propose a novel two-stage approach to federated graph learning (2SFGL)
2SFGL involves the virtual fusion of multiparty graphs, and the second involves model training and inference on the virtual graph.
We evaluate our framework on a conventional fraud detection task based on the FraudAmazonDataset and FraudYelpDataset.
arXiv Detail & Related papers (2023-10-12T13:48:26Z) - GraphCloak: Safeguarding Task-specific Knowledge within Graph-structured Data from Unauthorized Exploitation [61.80017550099027]
Graph Neural Networks (GNNs) are increasingly prevalent in a variety of fields.
Growing concerns have emerged regarding the unauthorized utilization of personal data.
Recent studies have shown that imperceptible poisoning attacks are an effective method of protecting image data from such misuse.
This paper introduces GraphCloak to safeguard against the unauthorized usage of graph data.
arXiv Detail & Related papers (2023-10-11T00:50:55Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
We present textbfGraph textbfModel textbfInversion attack (GraphMI), which aims to extract private graph data of the training graph by inverting GNN.
Specifically, we propose a projected gradient module to tackle the discreteness of graph edges while preserving the sparsity and smoothness of graph features.
We design a graph auto-encoder module to efficiently exploit graph topology, node attributes, and target model parameters for edge inference.
arXiv Detail & Related papers (2021-06-05T07:07:52Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.