Effective High-order Graph Representation Learning for Credit Card Fraud Detection
- URL: http://arxiv.org/abs/2503.01556v1
- Date: Mon, 03 Mar 2025 13:59:46 GMT
- Title: Effective High-order Graph Representation Learning for Credit Card Fraud Detection
- Authors: Yao Zou, Dawei Cheng,
- Abstract summary: Fraudsters often disguise their crimes by using legitimate transactions through several benign users to bypass anti-fraud detection.<n>Existing graph neural network (GNN) models struggle with learning features of camouflaged, indirect multi-hop transactions.<n>We propose a novel High-order Graph Representation Learning model (HOGRL) to avoid incorporating excessive noise during the multi-layer aggregation process.
- Score: 11.174026504498931
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Credit card fraud imposes significant costs on both cardholders and issuing banks. Fraudsters often disguise their crimes, such as using legitimate transactions through several benign users to bypass anti-fraud detection. Existing graph neural network (GNN) models struggle with learning features of camouflaged, indirect multi-hop transactions due to their inherent over-smoothing issues in deep multi-layer aggregation, presenting a major challenge in detecting disguised relationships. Therefore, in this paper, we propose a novel High-order Graph Representation Learning model (HOGRL) to avoid incorporating excessive noise during the multi-layer aggregation process. In particular, HOGRL learns different orders of \emph{pure} representations directly from high-order transaction graphs. We realize this goal by effectively constructing high-order transaction graphs first and then learning the \emph{pure} representations of each order so that the model could identify fraudsters' multi-hop indirect transactions via multi-layer \emph{pure} feature learning. In addition, we introduce a mixture-of-expert attention mechanism to automatically determine the importance of different orders for jointly optimizing fraud detection performance. We conduct extensive experiments in both the open source and real-world datasets, the result demonstrates the significant improvements of our proposed HOGRL compared with state-of-the-art fraud detection baselines. HOGRL's superior performance also proves its effectiveness in addressing high-order fraud camouflage criminals.
Related papers
- Detecting Credit Card Fraud via Heterogeneous Graph Neural Networks with Graph Attention [2.7002727600755883]
This study proposes a credit card fraud detection method based on Heterogeneous Graph Neural Network (HGNN)
By leveraging graph neural networks, the model captures higher-order transaction relationships.
The model achieves notable improvements in both accuracy and OC-ROC.
arXiv Detail & Related papers (2025-04-11T00:53:53Z) - A Label-Free Heterophily-Guided Approach for Unsupervised Graph Fraud Detection [60.09453163562244]
We propose a Heterophily-guided Unsupervised Graph fraud dEtection approach (HUGE) for unsupervised GFD.<n>In the estimation module, we design a novel label-free heterophily metric called HALO, which captures the critical graph properties for GFD.<n>In the alignment-based fraud detection module, we develop a joint-GNN architecture with ranking loss and asymmetric alignment loss.
arXiv Detail & Related papers (2025-02-18T22:07:36Z) - Semi-supervised Credit Card Fraud Detection via Attribute-Driven Graph Representation [28.745101225936697]
We propose a semi-supervised graph neural network for fraud detection.<n>Specifically, we leverage transaction records to construct a temporal transaction graph.<n>We then pass messages among the nodes through a Gated Temporal Attention Network (GTAN) to learn the transaction representation.
arXiv Detail & Related papers (2024-12-24T08:48:48Z) - Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
This paper proposes a novel approach for credit card fraud detection using Graph Neural Networks (GNNs) with attention mechanisms applied to heterogeneous graph representations of financial data.
The proposed model outperforms benchmark algorithms such as Graph Sage and FI-GRL, achieving a superior AUC-PR of 0.89 and an F1-score of 0.81.
arXiv Detail & Related papers (2024-10-10T17:05:27Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
We introduce a state-of-the-art hybrid ensemble (ENS) Machine learning (ML) model that intelligently combines multiple algorithms to enhance fraud identification.
Our experiments are conducted on a publicly available credit card dataset comprising 284,807 transactions.
The proposed model achieves impressive accuracy rates of 99.66%, 99.73%, 98.56%, and 99.79%, and a perfect 100% for the DT, RF, KNN, and ENS models, respectively.
arXiv Detail & Related papers (2024-02-22T09:01:42Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
Deepfakes are realistic face manipulations that can pose serious threats to security, privacy, and trust.
Existing methods mostly treat this task as binary classification, which uses digital labels or mask signals to train the detection model.
We propose a novel paradigm named Visual-Linguistic Face Forgery Detection(VLFFD), which uses fine-grained sentence-level prompts as the annotation.
arXiv Detail & Related papers (2023-07-31T10:22:33Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Hierarchical Forgery Classifier On Multi-modality Face Forgery Clues [61.37306431455152]
We propose a novel Hierarchical Forgery for Multi-modality Face Forgery Detection (HFC-MFFD)
The HFC-MFFD learns robust patches-based hybrid representation to enhance forgery authentication in multiple-modality scenarios.
The specific hierarchical face forgery is proposed to alleviate the class imbalance problem and further boost detection performance.
arXiv Detail & Related papers (2022-12-30T10:54:29Z) - The Devil is in the Conflict: Disentangled Information Graph Neural
Networks for Fraud Detection [17.254383007779616]
We argue that the performance degradation is mainly attributed to the inconsistency between topology and attribute.
We propose a simple and effective method that uses the attention mechanism to adaptively fuse two views.
Our model can significantly outperform stateof-the-art baselines on real-world fraud detection datasets.
arXiv Detail & Related papers (2022-10-22T08:21:49Z) - Deep Fraud Detection on Non-attributed Graph [61.636677596161235]
Graph Neural Networks (GNNs) have shown solid performance on fraud detection.
labeled data is scarce in large-scale industrial problems, especially for fraud detection.
We propose a novel graph pre-training strategy to leverage more unlabeled data.
arXiv Detail & Related papers (2021-10-04T03:42:09Z) - Relational Graph Neural Networks for Fraud Detection in a Super-App
environment [53.561797148529664]
We propose a framework of relational graph convolutional networks methods for fraudulent behaviour prevention in the financial services of a Super-App.
We use an interpretability algorithm for graph neural networks to determine the most important relations to the classification task of the users.
Our results show that there is an added value when considering models that take advantage of the alternative data of the Super-App and the interactions found in their high connectivity.
arXiv Detail & Related papers (2021-07-29T00:02:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.