SENC: Handling Self-collision in Neural Cloth Simulation
- URL: http://arxiv.org/abs/2407.12479v1
- Date: Wed, 17 Jul 2024 11:05:31 GMT
- Title: SENC: Handling Self-collision in Neural Cloth Simulation
- Authors: Zhouyingcheng Liao, Sinan Wang, Taku Komura,
- Abstract summary: SENC is a novel self-supervised neural simulator that addresses the challenge of cloth self-collision.
We introduce an effective external force scheme that enables the simulation to learn the cloth's behavior in response to random external forces.
- Score: 17.848249654104382
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present SENC, a novel self-supervised neural cloth simulator that addresses the challenge of cloth self-collision. This problem has remained unresolved due to the gap in simulation setup between recent collision detection and response approaches and self-supervised neural simulators. The former requires collision-free initial setups, while the latter necessitates random cloth instantiation during training. To tackle this issue, we propose a novel loss based on Global Intersection Analysis (GIA). This loss extracts the volume surrounded by the cloth region that forms the penetration. By constructing an energy based on this volume, our self-supervised neural simulator can effectively address cloth self-collisions. Moreover, we develop a self-collision-aware graph neural network capable of learning to handle self-collisions, even for parts that are topologically distant from one another. Additionally, we introduce an effective external force scheme that enables the simulation to learn the cloth's behavior in response to random external forces. We validate the efficacy of SENC through extensive quantitative and qualitative experiments, demonstrating that it effectively reduces cloth self-collision while maintaining high-quality animation results.
Related papers
- ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations [70.38866232749886]
We present moniker, a learning-based solution for handling intersections in neural cloth simulations.
moniker robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits.
arXiv Detail & Related papers (2024-05-15T17:25:59Z) - A Neuromorphic Approach to Obstacle Avoidance in Robot Manipulation [16.696524554516294]
We develop a neuromorphic approach to obstacle avoidance on a camera-equipped manipulator.
Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN.
Our results motivate incorporating SNN learning, utilizing neuromorphic processors, and further exploring the potential of neuromorphic methods.
arXiv Detail & Related papers (2024-04-08T20:42:10Z) - A Physics-embedded Deep Learning Framework for Cloth Simulation [6.8806198396336935]
This paper proposes a physics-embedded learning framework that directly encodes physical features of cloth simulation.
The framework can also integrate with other external forces and collision handling through either traditional simulators or sub neural networks.
arXiv Detail & Related papers (2024-03-19T15:21:00Z) - DeepSimHO: Stable Pose Estimation for Hand-Object Interaction via
Physics Simulation [81.11585774044848]
We present DeepSimHO, a novel deep-learning pipeline that combines forward physics simulation and backward gradient approximation with a neural network.
Our method noticeably improves the stability of the estimation and achieves superior efficiency over test-time optimization.
arXiv Detail & Related papers (2023-10-11T05:34:36Z) - NeuralClothSim: Neural Deformation Fields Meet the Thin Shell Theory [70.10550467873499]
We propose NeuralClothSim, a new quasistatic cloth simulator using thin shells.
Our memory-efficient solver operates on a new continuous coordinate-based surface representation called neural deformation fields.
arXiv Detail & Related papers (2023-08-24T17:59:54Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - A Repulsive Force Unit for Garment Collision Handling in Neural Networks [61.34646212450137]
We propose a novel collision handling neural network layer called Repulsive Force Unit (ReFU)
Based on the signed distance function (SDF) of the underlying body, ReFU predicts the per-vertex offsets that push any interpenetrating to a collision-free configuration while preserving the fine geometric details.
Our experiments show that ReFU significantly reduces the number of collisions between the body and the garment and better preserves geometric details compared to prior methods.
arXiv Detail & Related papers (2022-07-28T03:46:16Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.