ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations
- URL: http://arxiv.org/abs/2405.09522v2
- Date: Fri, 24 May 2024 11:51:32 GMT
- Title: ContourCraft: Learning to Resolve Intersections in Neural Multi-Garment Simulations
- Authors: Artur Grigorev, Giorgio Becherini, Michael J. Black, Otmar Hilliges, Bernhard Thomaszewski,
- Abstract summary: We present moniker, a learning-based solution for handling intersections in neural cloth simulations.
moniker robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits.
- Score: 70.38866232749886
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Learning-based approaches to cloth simulation have started to show their potential in recent years. However, handling collisions and intersections in neural simulations remains a largely unsolved problem. In this work, we present \moniker{}, a learning-based solution for handling intersections in neural cloth simulations. Unlike conventional approaches that critically rely on intersection-free inputs, \moniker{} robustly recovers from intersections introduced through missed collisions, self-penetrating bodies, or errors in manually designed multi-layer outfits. The technical core of \moniker{} is a novel intersection contour loss that penalizes interpenetrations and encourages rapid resolution thereof. We integrate our intersection loss with a collision-avoiding repulsion objective into a neural cloth simulation method based on graph neural networks (GNNs). We demonstrate our method's ability across a challenging set of diverse multi-layer outfits under dynamic human motions. Our extensive analysis indicates that \moniker{} significantly improves collision handling for learned simulation and produces visually compelling results.
Related papers
- SENC: Handling Self-collision in Neural Cloth Simulation [17.848249654104382]
SENC is a novel self-supervised neural simulator that addresses the challenge of cloth self-collision.
We introduce an effective external force scheme that enables the simulation to learn the cloth's behavior in response to random external forces.
arXiv Detail & Related papers (2024-07-17T11:05:31Z) - Multi-Hierarchical Surrogate Learning for Structural Dynamical Crash
Simulations Using Graph Convolutional Neural Networks [5.582881461692378]
We propose a multi-hierarchical framework for structurally creating a series of surrogate models for a kart frame.
For multiscale phenomena, macroscale features are captured on a coarse surrogate, whereas microscale effects are resolved by finer ones.
We train a graph-convolutional neural network-based surrogate that learns parameter-dependent low-dimensional latent dynamics on the coarsest representation.
arXiv Detail & Related papers (2024-02-14T15:22:59Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
We propose DNMOT, an end-to-end trainable DeNoising Transformer for multiple object tracking.
Specifically, we augment the trajectory with noises during training and make our model learn the denoising process in an encoder-decoder architecture.
We conduct extensive experiments on the MOT17, MOT20, and DanceTrack datasets, and the experimental results show that our method outperforms previous state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2023-09-09T04:40:01Z) - BCSSN: Bi-direction Compact Spatial Separable Network for Collision
Avoidance in Autonomous Driving [4.392212820170972]
Rule-based systems, decision trees, Markov decision processes, and Bayesian networks have been some of the popular methods used to tackle the complexities of traffic conditions and avoid collisions.
With the emergence of deep learning, many researchers have turned towards CNN-based methods to improve the performance of collision avoidance.
We propose a CNN-based method that overcomes the limitation by establishing feature correlations between regions in sequential images using variants of attention.
arXiv Detail & Related papers (2023-03-12T17:35:57Z) - RISP: Rendering-Invariant State Predictor with Differentiable Simulation
and Rendering for Cross-Domain Parameter Estimation [110.4255414234771]
Existing solutions require massive training data or lack generalizability to unknown rendering configurations.
We propose a novel approach that marries domain randomization and differentiable rendering gradients to address this problem.
Our approach achieves significantly lower reconstruction errors and has better generalizability among unknown rendering configurations.
arXiv Detail & Related papers (2022-05-11T17:59:51Z) - Collision-Free Navigation using Evolutionary Symmetrical Neural Networks [0.0]
This paper extends the previous work using evolutionary neural networks for reactive collision avoidance.
We are proposing a new method we have called symmetric neural networks.
The method improves the model's performance by enforcing constraints between the network weights.
arXiv Detail & Related papers (2022-03-29T13:02:14Z) - Active Learning of Neural Collision Handler for Complex 3D Mesh
Deformations [68.0524382279567]
We present a robust learning algorithm to detect and handle collisions in 3D deforming meshes.
Our approach outperforms supervised learning methods and achieves $93.8-98.1%$ accuracy.
arXiv Detail & Related papers (2021-10-08T04:08:31Z) - RICE: Refining Instance Masks in Cluttered Environments with Graph
Neural Networks [53.15260967235835]
We propose a novel framework that refines the output of such methods by utilizing a graph-based representation of instance masks.
We train deep networks capable of sampling smart perturbations to the segmentations, and a graph neural network, which can encode relations between objects, to evaluate the segmentations.
We demonstrate an application that uses uncertainty estimates generated by our method to guide a manipulator, leading to efficient understanding of cluttered scenes.
arXiv Detail & Related papers (2021-06-29T20:29:29Z) - Limited-angle tomographic reconstruction of dense layered objects by
dynamical machine learning [68.9515120904028]
Limited-angle tomography of strongly scattering quasi-transparent objects is a challenging, highly ill-posed problem.
Regularizing priors are necessary to reduce artifacts by improving the condition of such problems.
We devised a recurrent neural network (RNN) architecture with a novel split-convolutional gated recurrent unit (SC-GRU) as the building block.
arXiv Detail & Related papers (2020-07-21T11:48:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.