論文の概要: Abstraction Alignment: Comparing Model-Learned and Human-Encoded Conceptual Relationships
- arxiv url: http://arxiv.org/abs/2407.12543v2
- Date: Thu, 13 Feb 2025 20:47:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-17 18:06:00.545979
- Title: Abstraction Alignment: Comparing Model-Learned and Human-Encoded Conceptual Relationships
- Title(参考訳): 抽象アライメント:モデル学習と人間エンコードの概念関係の比較
- Authors: Angie Boggust, Hyemin Bang, Hendrik Strobelt, Arvind Satyanarayan,
- Abstract要約: モデル行動と形式的人間の知識を比較する手法である抽象的アライメントを導入する。
抽象化アライメントは、抽象グラフとしてドメイン固有の人間の知識を外部化する。
ユーザーは、モデルが学んだ人間の概念など、アライメント仮説をテストすることができる。
- 参考スコア(独自算出の注目度): 26.503178592074757
- License:
- Abstract: While interpretability methods identify a model's learned concepts, they overlook the relationships between concepts that make up its abstractions and inform its ability to generalize to new data. To assess whether models' have learned human-aligned abstractions, we introduce abstraction alignment, a methodology to compare model behavior against formal human knowledge. Abstraction alignment externalizes domain-specific human knowledge as an abstraction graph, a set of pertinent concepts spanning levels of abstraction. Using the abstraction graph as a ground truth, abstraction alignment measures the alignment of a model's behavior by determining how much of its uncertainty is accounted for by the human abstractions. By aggregating abstraction alignment across entire datasets, users can test alignment hypotheses, such as which human concepts the model has learned and where misalignments recur. In evaluations with experts, abstraction alignment differentiates seemingly similar errors, improves the verbosity of existing model-quality metrics, and uncovers improvements to current human abstractions.
- Abstract(参考訳): 解釈可能性メソッドはモデルの学習した概念を識別するが、抽象化を構成する概念間の関係を見落とし、新しいデータに一般化する能力を伝える。
モデルが人間の協調的抽象化を学習したかどうかを評価するために,モデル行動と形式的人間の知識を比較する手法である抽象的アライメントを導入する。
抽象化アライメントは、抽象化のレベルにまたがる関連する概念のセットである抽象グラフとして、ドメイン固有の人間の知識を外部化する。
抽象グラフを基礎となる真実として、抽象アライメントは、人間の抽象によってその不確実性がどの程度考慮されているかを決定することによって、モデルの振舞いのアライメントを測定する。
データセット全体にわたる抽象的なアライメントを集約することにより、モデルが学んだ人間の概念やミスアライメントの再帰といったアライメント仮説をテストすることが可能になる。
専門家による評価では、抽象化アライメントは一見類似したエラーを区別し、既存のモデル品質メトリクスの冗長性を改善し、現在の人間の抽象化の改善を明らかにする。
関連論文リスト
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
テキストと画像の拡散モデルに光を流す新しいHOI検出器であるDIFfusionHOIを紹介する。
まず、埋め込み空間における人間と物体の関係パターンの表現をインバージョンベースで学習する戦略を考案する。
これらの学習された関係埋め込みはテキストのプロンプトとして機能し、スタイア拡散モデルが特定の相互作用を記述する画像を生成する。
論文 参考訳(メタデータ) (2024-10-26T12:00:33Z) - Learning Interpretable Concepts: Unifying Causal Representation Learning
and Foundation Models [51.43538150982291]
人間の解釈可能な概念をデータから学習する方法を研究する。
両分野からアイデアをまとめ、多様なデータから概念を確実に回収できることを示す。
論文 参考訳(メタデータ) (2024-02-14T15:23:59Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - Emergence and Function of Abstract Representations in Self-Supervised
Transformers [0.0]
本研究では,部分的にマスキングされた視覚シーンを再構築するために訓練された小型トランスフォーマーの内部動作について検討する。
ネットワークは、データセットのすべての意味的特徴をエンコードする中間抽象表現(抽象表現)を開発する。
正確な操作実験を用いて、抽象化がネットワークの意思決定プロセスの中心であることを実証する。
論文 参考訳(メタデータ) (2023-12-08T20:47:15Z) - The Relational Bottleneck as an Inductive Bias for Efficient Abstraction [3.19883356005403]
ニューラルネットワークはアーキテクチャを通して、個々の入力の属性ではなく、知覚的入力間の関係に焦点を絞っていることを示す。
データ効率のよい方法で抽象化を誘導するために、このアプローチを用いたモデルのファミリーをレビューする。
論文 参考訳(メタデータ) (2023-09-12T22:44:14Z) - Systematic Visual Reasoning through Object-Centric Relational
Abstraction [5.914610036560008]
対象と抽象的関係の明示的な表現を抽出するモデルであるOCRAを紹介する。
複雑な視覚ディスプレイを含むタスクにおいて、強力な体系的な一般化を実現する。
論文 参考訳(メタデータ) (2023-06-04T22:47:17Z) - Does Deep Learning Learn to Abstract? A Systematic Probing Framework [69.2366890742283]
抽象化はディープラーニングモデルにとって望ましい機能であり、具体的なインスタンスから抽象概念を誘導し、学習コンテキストを超えて柔軟に適用することを意味する。
本稿では,伝達可能性の観点から,ディープラーニングモデルの抽象化能力を検討するための体系的探索フレームワークを提案する。
論文 参考訳(メタデータ) (2023-02-23T12:50:02Z) - Towards Computing an Optimal Abstraction for Structural Causal Models [16.17846886492361]
我々は抽象学習の問題に焦点をあてる。
我々は,情報損失の具体的な尺度を提案し,その新しい抽象化の学習への貢献について説明する。
論文 参考訳(メタデータ) (2022-08-01T14:35:57Z) - Dissecting Generation Modes for Abstractive Summarization Models via
Ablation and Attribution [34.2658286826597]
本稿では,要約モデル決定を解釈する2段階の手法を提案する。
まず、各デコーダ決定を複数の生成モードの1つに分類するために、モデル全体を非難することでモデルの振舞いを解析する。
入力に依存する決定を分離した後、いくつかの異なる帰属法を用いてこれらの決定を解釈する。
論文 参考訳(メタデータ) (2021-06-03T00:54:16Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
リレーショナル・テンポラル関係を明示的にモデル化するメッセージパッシンググラフニューラルネットワークを提案する。
本手法は,シーン内の関連エンティティ間の関係をより効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-29T14:37:35Z) - Prototypical Representation Learning for Relation Extraction [56.501332067073065]
本論文では, 遠隔ラベルデータから予測可能, 解釈可能, 堅牢な関係表現を学習することを目的とする。
文脈情報から各関係のプロトタイプを学習し,関係の本質的意味を最善に探求する。
いくつかの関係学習タスクの結果,本モデルが従来の関係モデルを大きく上回っていることがわかった。
論文 参考訳(メタデータ) (2021-03-22T08:11:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。