A Brief Review of Quantum Machine Learning for Financial Services
- URL: http://arxiv.org/abs/2407.12618v1
- Date: Wed, 17 Jul 2024 14:44:47 GMT
- Title: A Brief Review of Quantum Machine Learning for Financial Services
- Authors: Mina Doosti, Petros Wallden, Conor Brian Hamill, Robert Hankache, Oliver Thomson Brown, Chris Heunen,
- Abstract summary: This review paper examines state-of-the-art algorithms and techniques in quantum machine learning with potential applications in finance.
The financial applications considered include risk management, credit scoring, fraud detection, and stock price prediction.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This review paper examines state-of-the-art algorithms and techniques in quantum machine learning with potential applications in finance. We discuss QML techniques in supervised learning tasks, such as Quantum Variational Classifiers, Quantum Kernel Estimation, and Quantum Neural Networks (QNNs), along with quantum generative AI techniques like Quantum Transformers and Quantum Graph Neural Networks (QGNNs). The financial applications considered include risk management, credit scoring, fraud detection, and stock price prediction. We also provide an overview of the challenges, potential, and limitations of QML, both in these specific areas and more broadly across the field. We hope that this can serve as a quick guide for data scientists, professionals in the financial sector, and enthusiasts in this area to understand why quantum computing and QML in particular could be interesting to explore in their field of expertise.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - From Graphs to Qubits: A Critical Review of Quantum Graph Neural Networks [56.51893966016221]
Quantum Graph Neural Networks (QGNNs) represent a novel fusion of quantum computing and Graph Neural Networks (GNNs)
This paper critically reviews the state-of-the-art in QGNNs, exploring various architectures.
We discuss their applications across diverse fields such as high-energy physics, molecular chemistry, finance and earth sciences, highlighting the potential for quantum advantage.
arXiv Detail & Related papers (2024-08-12T22:53:14Z) - Quantum Multiple Kernel Learning in Financial Classification Tasks [2.8564636890651607]
We propose a hybrid, quantum multiple kernel learning (QMKL) methodology that can improve classification quality over a single kernel approach.
We show QMKL on quantum hardware using an error mitigation pipeline and show the benefits of QMKL in the large qubit regime.
arXiv Detail & Related papers (2023-12-01T00:18:43Z) - Implementing Quantum Generative Adversarial Network (qGAN) and QCBM in
Finance [0.0]
Quantum computers are being used today in drug discovery, material & molecular modelling and finance.
We discuss some upcoming active new research areas in application of quantum machine learning (QML) in finance.
arXiv Detail & Related papers (2023-08-15T14:21:16Z) - Challenges and Opportunities in Quantum Machine Learning [2.5671549335906367]
Quantum Machine Learning (QML) has the potential of accelerating data analysis, especially for quantum data.
Here we review current methods and applications for QML.
We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning.
arXiv Detail & Related papers (2023-03-16T17:10:39Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum Finance: a tutorial on quantum computing applied to the
financial market [0.7388859384645263]
This article focuses on the fundamentals of quantum computing, focusing on a promising quantum algorithm and its application to a financial market problem.
We not only describe the main concepts involved but also consider simple practical examples involving financial assets available on the Brazilian stock exchange, with codes, both classic and quantum, freely available as a Jupyter Notebook.
arXiv Detail & Related papers (2022-08-08T19:37:27Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
Quantum generative learning models (QGLMs) may surpass their classical counterparts.
We review the current progress of QGLMs from the perspective of machine learning.
We discuss the potential applications of QGLMs in both conventional machine learning tasks and quantum physics.
arXiv Detail & Related papers (2022-06-07T07:32:57Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
We study learnability of quantum circuit Born machines (QCBMs) and quantum generative adversarial networks (QGANs)
We first analyze the generalization ability of QCBMs and identify their superiorities when the quantum devices can directly access the target distribution.
Next, we prove how the generalization error bound of QGANs depends on the employed Ansatz, the number of qudits, and input states.
arXiv Detail & Related papers (2022-05-10T08:05:59Z) - Quantum Computing for Finance: State of the Art and Future Prospects [8.77758485723332]
This article outlines our point of view regarding the applicability, state-of-the-art, and potential of quantum computing for problems in finance.
We describe in detail quantum algorithms for specific applications arising in financial services, such as those involving simulation, optimization, and machine learning problems.
In addition, we include demonstrations of quantum algorithms on IBM Quantum back-ends and discuss the potential benefits of quantum algorithms for problems in financial services.
arXiv Detail & Related papers (2020-06-25T16:02:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.